Yao Li, Richard A Pacalaj, Yongmin Luo, Keren Ai, Yulong Hai, Shijie Liang, Kezhou Fan, Aleksandr A Sergeev, Ruijie Ma, Top Archie Dela Peña, Jolanda S Müller, Zijing Jin, P Shakya Tuladhar, Tao Jia, Jiannong Wang, Gang Li, Kam Sing Wong, Weiwei Li, James R Durrant, Jiaying Wu
{"title":"Molecular Control of the Donor/Acceptor Interface Suppresses Charge Recombination Enabling High-Efficiency Single-Component Organic Solar Cells.","authors":"Yao Li, Richard A Pacalaj, Yongmin Luo, Keren Ai, Yulong Hai, Shijie Liang, Kezhou Fan, Aleksandr A Sergeev, Ruijie Ma, Top Archie Dela Peña, Jolanda S Müller, Zijing Jin, P Shakya Tuladhar, Tao Jia, Jiannong Wang, Gang Li, Kam Sing Wong, Weiwei Li, James R Durrant, Jiaying Wu","doi":"10.1002/adma.202409212","DOIUrl":null,"url":null,"abstract":"<p><p>Single-component organic solar cells based on double cable polymers have achieved remarkable performance, with DCPY2 reaching a high efficiency of over 13%. In this study, DCPY2 is further optimized with an efficiency of 13.85%, maintaining a high fill factor (FF) without compromising the short circuit current. Despite its intermixed morphology, DCPY2 shows a reduced recombination rate compared to their binary counterpart (PBDB-T:Y-O6). This slower recombination in DCPY2 is attributed to the reduced wavefunction overlap of delocalized charges, achieved by spatially separating the donor and acceptor units with an alkyl linker, thereby restricting the recombination pathways. Adding 1,8-diiodooctane (DIO) into DCPY2 further reduced the recombination rate by facilitating acceptor aggregation, allowing free charges to become more delocalized. The DIO-assisted aggregation in DCPY2 (5% DIO) is evidenced by an increased pseudo-pure domain size of Y-O6. Fine molecular control at the donor/acceptor interface in the double-cable polymer achieves reduced non-geminate recombination under efficient charge generation, increased mobility, and charge carrier lifetime, thereby achieving superior performance. Nevertheless, the FF is still limited by relatively low mobility compared to the blend, suggesting the potential for further mobility improvement through enhanced higher-dimensional packing of the double-cable material.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409212","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-component organic solar cells based on double cable polymers have achieved remarkable performance, with DCPY2 reaching a high efficiency of over 13%. In this study, DCPY2 is further optimized with an efficiency of 13.85%, maintaining a high fill factor (FF) without compromising the short circuit current. Despite its intermixed morphology, DCPY2 shows a reduced recombination rate compared to their binary counterpart (PBDB-T:Y-O6). This slower recombination in DCPY2 is attributed to the reduced wavefunction overlap of delocalized charges, achieved by spatially separating the donor and acceptor units with an alkyl linker, thereby restricting the recombination pathways. Adding 1,8-diiodooctane (DIO) into DCPY2 further reduced the recombination rate by facilitating acceptor aggregation, allowing free charges to become more delocalized. The DIO-assisted aggregation in DCPY2 (5% DIO) is evidenced by an increased pseudo-pure domain size of Y-O6. Fine molecular control at the donor/acceptor interface in the double-cable polymer achieves reduced non-geminate recombination under efficient charge generation, increased mobility, and charge carrier lifetime, thereby achieving superior performance. Nevertheless, the FF is still limited by relatively low mobility compared to the blend, suggesting the potential for further mobility improvement through enhanced higher-dimensional packing of the double-cable material.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.