Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations.

IF 2.9 4区 生物学 Q1 ANATOMY & MORPHOLOGY Cells Tissues Organs Pub Date : 2024-08-27 DOI:10.1159/000540976
Tae-Hyeon Cho, Miri Kim, Shin Hyung Kim, Jong Eun Lee, Se Hoon Kim, Hyun Jung Kim, Ju-Eun Hong, In-Seung Yeo, Hun-Mu Yang
{"title":"Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations.","authors":"Tae-Hyeon Cho, Miri Kim, Shin Hyung Kim, Jong Eun Lee, Se Hoon Kim, Hyun Jung Kim, Ju-Eun Hong, In-Seung Yeo, Hun-Mu Yang","doi":"10.1159/000540976","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers.</p><p><strong>Methods: </strong>We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR.</p><p><strong>Results: </strong>Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways.</p><p><strong>Conclusion: </strong>Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000540976","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers.

Methods: We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR.

Results: Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways.

Conclusion: Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新考虑人脑中的神经遗传指示:双皮质素转录本在海马和皮质细胞群中的广泛表达
简介成人大脑中的神经发生可能在记忆和认知中发挥重要作用;然而,人们对人脑中神经发生标记的了解仍然有限。我们比较了海马与其他皮层区域的单核转录组,以确定海马特异性神经源标记:我们分析了在人死亡后 16 小时内采集的四个人脑中的 26,189 个细胞核。我们进行了聚类和注释,以检查差异表达、基因本体和细胞间通讯。通过液滴 ddPCR 验证了 DCX 的表达:结果:DCX、CALB2、NES、SOX2、PAX6、DPYSL3 和 TUBB3 等未成熟标记物在海马和前额叶皮层均有表达,其中前额叶皮层的表达水平更高。DCX 参与了神经发生和神经保护途径:结论:神经源性标志物并不是成人神经发生的明确指标,因为它们的作用比以前所理解的更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells Tissues Organs
Cells Tissues Organs 生物-发育生物学
CiteScore
4.90
自引率
3.70%
发文量
45
审稿时长
6-12 weeks
期刊介绍: ''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.
期刊最新文献
Spheroid-Hydrogel Integrated Biomimetic System (SHIBS): A New Frontier in Advanced 3D Cell Culture Technology. Selection of the Most Suitable Culture Medium for Patient-Derived Lung Cancer Organoids. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations. The Effects of Atoh8 on Postnatal Murine Neurogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1