Multidimensional Measure Matching for Crowd Counting.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2024-08-27 DOI:10.1109/TNNLS.2024.3435854
Hui Lin, Xiaopeng Hong, Zhiheng Ma, Yaowei Wang, Deyu Meng
{"title":"Multidimensional Measure Matching for Crowd Counting.","authors":"Hui Lin, Xiaopeng Hong, Zhiheng Ma, Yaowei Wang, Deyu Meng","doi":"10.1109/TNNLS.2024.3435854","DOIUrl":null,"url":null,"abstract":"<p><p>This article addresses the challenge of scale variations in crowd-counting problems from a multidimensional measure-theoretic perspective. We start by formulating crowd counting as a measure-matching problem, based on the assumption that discrete measures can express the scattered ground truth and the predicted density map. In this context, we introduce the Sinkhorn counting loss and extend it to the semi-balanced form, which alleviates the problems including entropic bias, distance destruction, and amount constraints. We then model the measure matching under the multidimensional space, in order to learn the counting from both location and scale. To achieve this, we extend the traditional 2-D coordinate support to 3-D, incorporating an additional axis to represent scale information, where a pyramid-based structure will be leveraged to learn the scale value for the predicted density. Extensive experiments on four challenging crowd-counting datasets, namely, ShanghaiTech A, UCF-QNRF, JHU ++ , and NWPU have validated the proposed method. Code is released at https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2024.3435854","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the challenge of scale variations in crowd-counting problems from a multidimensional measure-theoretic perspective. We start by formulating crowd counting as a measure-matching problem, based on the assumption that discrete measures can express the scattered ground truth and the predicted density map. In this context, we introduce the Sinkhorn counting loss and extend it to the semi-balanced form, which alleviates the problems including entropic bias, distance destruction, and amount constraints. We then model the measure matching under the multidimensional space, in order to learn the counting from both location and scale. To achieve this, we extend the traditional 2-D coordinate support to 3-D, incorporating an additional axis to represent scale information, where a pyramid-based structure will be leveraged to learn the scale value for the predicted density. Extensive experiments on four challenging crowd-counting datasets, namely, ShanghaiTech A, UCF-QNRF, JHU ++ , and NWPU have validated the proposed method. Code is released at https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人群计数的多维测量匹配
本文从多维度量理论的角度探讨了人群统计问题中的规模变化难题。基于离散度量能表达分散的地面实况和预测的密度图这一假设,我们首先将人群计数表述为一个度量匹配问题。在此背景下,我们引入了 Sinkhorn 计数损失,并将其扩展为半平衡形式,从而缓解了包括熵偏差、距离破坏和数量限制在内的问题。然后,我们对多维空间下的度量匹配进行建模,以便从位置和尺度两方面学习计数。为此,我们将传统的二维坐标支持扩展到三维空间,加入了一个额外的轴来表示尺度信息,并利用基于金字塔的结构来学习预测密度的尺度值。在四个具有挑战性的人群计数数据集(即上海科技 A、UCF-QNRF、JHU ++ 和 NWPU)上进行的广泛实验验证了所提出的方法。代码发布于 https://github.com/LoraLinH/Multidimensional-Measure-Matching-for-Crowd-Counting。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Boundary-Aware Axial Attention Network for High-Quality Pavement Crack Detection Granular Ball Twin Support Vector Machine Decoupled Prioritized Resampling for Offline RL Adaptive Graph Convolutional Network for Unsupervised Generalizable Tabular Representation Learning Gently Sloped and Extended Classification Margin for Overconfidence Relaxation of Out-of-Distribution Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1