Cristina Modiga, Andreea Stoia, Marius Traian Leretter, Ana Codruţa Chiş, Andreea-Violeta Ardelean, Edward-Ronald Azar, Gabriel Kapor, Daniela-Maria Pop, Mihai Romînu, Cosmin Sinescu, Meda-Lavinia Negruţiu, Emanuela-Lidia Petrescu
{"title":"Mechanical Assessment of Denture Polymers Processing Technologies.","authors":"Cristina Modiga, Andreea Stoia, Marius Traian Leretter, Ana Codruţa Chiş, Andreea-Violeta Ardelean, Edward-Ronald Azar, Gabriel Kapor, Daniela-Maria Pop, Mihai Romînu, Cosmin Sinescu, Meda-Lavinia Negruţiu, Emanuela-Lidia Petrescu","doi":"10.3390/jfb15080234","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Removable prostheses have seen a fundamental change recently because of advances in polymer materials, allowing improved durability and performance. Despite these advancements, notable differences still occur amongst various polymer materials and processing technologies, requiring a thorough grasp of their mechanical, physical, and therapeutic implications. The compressive strength of dentures manufactured using various technologies will be investigated.</p><p><strong>Methods: </strong>Traditional, injection molding, and additive and subtractive CAD/CAM processing techniques, all utilizing Polymethyl methacrylate (PMMA) as the main material, were used to construct complete dentures. The specimens underwent a compressive mechanical test, which reveals the differences in compressive strength.</p><p><strong>Results: </strong>All the specimens broke under the influence of a certain force, rather than yielding through flow, as is characteristic for plastic materials. For each specimen, the maximum force (N) was recorded, as well as the breaking energy. The mean force required to break the dentures for each processing technology is as follows: 4.54 kN for traditional packing-press technique, 17.92 kN for the injection molding technique, 1.51 kN for the additive CAD/CAM dentures, and 5.9 kN for the subtractive CAD/CAM dentures.</p><p><strong>Conclusions: </strong>The best results were obtained in the case of the thermoplastic injection system and the worst results were recorded in the case of 3D printed samples. Another important aspect depicted is the standard deviation for each group, which reveal a relatively unstable property for the thermoplastic injected dentures. Good results here in terms of absolute property and stability of the property can be conferred to CAD/CAM milled group.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080234","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Removable prostheses have seen a fundamental change recently because of advances in polymer materials, allowing improved durability and performance. Despite these advancements, notable differences still occur amongst various polymer materials and processing technologies, requiring a thorough grasp of their mechanical, physical, and therapeutic implications. The compressive strength of dentures manufactured using various technologies will be investigated.
Methods: Traditional, injection molding, and additive and subtractive CAD/CAM processing techniques, all utilizing Polymethyl methacrylate (PMMA) as the main material, were used to construct complete dentures. The specimens underwent a compressive mechanical test, which reveals the differences in compressive strength.
Results: All the specimens broke under the influence of a certain force, rather than yielding through flow, as is characteristic for plastic materials. For each specimen, the maximum force (N) was recorded, as well as the breaking energy. The mean force required to break the dentures for each processing technology is as follows: 4.54 kN for traditional packing-press technique, 17.92 kN for the injection molding technique, 1.51 kN for the additive CAD/CAM dentures, and 5.9 kN for the subtractive CAD/CAM dentures.
Conclusions: The best results were obtained in the case of the thermoplastic injection system and the worst results were recorded in the case of 3D printed samples. Another important aspect depicted is the standard deviation for each group, which reveal a relatively unstable property for the thermoplastic injected dentures. Good results here in terms of absolute property and stability of the property can be conferred to CAD/CAM milled group.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.