Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-08-14 DOI:10.3390/jfb15080225
George-Alexandru Croitoru, Diana-Cristina Pîrvulescu, Adelina-Gabriela Niculescu, Dragoș Epistatu, Marius Rădulescu, Alexandru Mihai Grumezescu, Carmen-Larisa Nicolae
{"title":"Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy.","authors":"George-Alexandru Croitoru, Diana-Cristina Pîrvulescu, Adelina-Gabriela Niculescu, Dragoș Epistatu, Marius Rădulescu, Alexandru Mihai Grumezescu, Carmen-Larisa Nicolae","doi":"10.3390/jfb15080225","DOIUrl":null,"url":null,"abstract":"<p><p>The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫学中的纳米材料:免疫学中的纳米材料:免疫调节、诊断和治疗创新方法的桥梁。
多年来,免疫学与纳米技术的交叉在生物医学研究和临床应用方面取得了重大进展。免疫学旨在了解免疫系统对病原体的防御机制。纳米技术已经证明了其操纵免疫反应的潜力,因为纳米材料的特性可以根据所需的应用进行改变。研究表明,纳米材料可用于诊断、治疗和疫苗开发。在诊断方面,纳米材料可用于开发生物传感器,即使在浓度很低的情况下也能准确检测生物标志物。在治疗方面,纳米材料可作为高效载体,将药物、抗原或遗传物质直接输送到目标细胞或组织。这种有针对性的递送提高了疗效,减少了对健康细胞和组织的不利影响。在疫苗开发中,纳米颗粒可通过有效地向免疫细胞输送佐剂和抗原,提高疫苗的耐久性并扩大免疫反应。尽管取得了这些进步,但纳米材料在安全性、生物相容性和临床应用的可扩展性方面仍然存在挑战。本综述将介绍纳米材料与免疫系统之间的基本相互作用、它们在免疫学中的潜在应用,以及它们的安全性和生物相容性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Temperature Changes (ΔT) in Correlation with Number of Implant Osteotomy Preparations in Human Cadaver Tibiae, Comparing Osseodensification (OD) Burs in Clockwise (CW) versus Counterclockwise (CCW) Mode. Characterization of Trabecular Bone Microarchitecture and Mechanical Properties Using Bone Surface Curvature Distributions. Chitosan-Stabilized Selenium Nanoparticles Alleviate High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Modulating the Gut Barrier Function and Microbiota. Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue. Lymphatic Regeneration after Popliteal Lymph Node Excision and Implantation of Aligned Nanofibrillar Collagen Scaffolds: An Experimental Rabbit Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1