Massively parallel measurement of protein–protein interactions by sequencing using MP3-seq

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2024-08-27 DOI:10.1038/s41589-024-01718-x
Alexandr Baryshev, Alyssa La Fleur, Benjamin Groves, Cirstyn Michel, David Baker, Ajasja Ljubetič, Georg Seelig
{"title":"Massively parallel measurement of protein–protein interactions by sequencing using MP3-seq","authors":"Alexandr Baryshev, Alyssa La Fleur, Benjamin Groves, Cirstyn Michel, David Baker, Ajasja Ljubetič, Georg Seelig","doi":"10.1038/s41589-024-01718-x","DOIUrl":null,"url":null,"abstract":"Protein–protein interactions (PPIs) regulate many cellular processes and engineered PPIs have cell and gene therapy applications. Here, we introduce massively parallel PPI measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Lastly, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics-based energy terms to predict MP3-seq values. We find that AF-M-based models could be valuable for prescreening interactions but experimentally measuring interactions remains necessary to rank their strengths quantitatively. A method called massively parallel PPI measurement by sequencing (MP3-seq) is developed for measuring protein–protein interactions at scale. MP3-seq uses DNA barcodes that are associated with specific protein pairs and provides a quantitative measure of interaction strength. Interactions between rationally designed heterodimers and elements conferring interaction specificity were investigated using MP3-seq.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511666/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01718-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein–protein interactions (PPIs) regulate many cellular processes and engineered PPIs have cell and gene therapy applications. Here, we introduce massively parallel PPI measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Lastly, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics-based energy terms to predict MP3-seq values. We find that AF-M-based models could be valuable for prescreening interactions but experimentally measuring interactions remains necessary to rank their strengths quantitatively. A method called massively parallel PPI measurement by sequencing (MP3-seq) is developed for measuring protein–protein interactions at scale. MP3-seq uses DNA barcodes that are associated with specific protein pairs and provides a quantitative measure of interaction strength. Interactions between rationally designed heterodimers and elements conferring interaction specificity were investigated using MP3-seq.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MP3-seq 测序技术大规模并行测量蛋白质与蛋白质之间的相互作用。
蛋白质-蛋白质相互作用(PPIs)调控着许多细胞过程,工程化的 PPIs 可用于细胞和基因治疗。在这里,我们介绍了通过测序进行大规模并行 PPI 测量(MP3-seq),这是一种易于使用且高度可扩展的测量 PPI 的酵母双杂交方法。在 MP3-seq 中,DNA 条形码与特定蛋白质对相关联,条形码富集可通过测序读取,从而直接测量相互作用强度。我们的研究表明,MP3-seq 具有高度定量性,可扩展到 100,000 种以上的相互作用。我们将 MP3-seq 应用于描述合理设计的异源二聚体家族之间的相互作用,并研究赋予线圈相互作用特异性的元素。最后,我们使用 AlphaFold-Multimer(AF-M)预测了盘绕异二聚体结构,并训练了基于物理学能量项的线性模型来预测 MP3-seq 值。我们发现,基于 AF-M 的模型对预选相互作用很有价值,但要对相互作用的强度进行定量排序,仍然需要对相互作用进行实验测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
Engineering a xylose fermenting yeast for lignocellulosic ethanol production A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery Carbonic anhydrase inhibition ameliorates tau toxicity via enhanced tau secretion Evading resistance at the double Protein Degradation in Focus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1