Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-08-27 DOI:10.1038/s41467-024-51810-y
Jinglin Li, Bowen Sheng, Yiqing Chen, Jiajia Yang, Ping Wang, Yixin Li, Tianqi Yu, Hu Pan, Liang Qiu, Ying Li, Jun Song, Lei Zhu, Xinqiang Wang, Zhen Huang, Baowen Zhou
{"title":"Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon.","authors":"Jinglin Li, Bowen Sheng, Yiqing Chen, Jiajia Yang, Ping Wang, Yixin Li, Tianqi Yu, Hu Pan, Liang Qiu, Ying Li, Jun Song, Lei Zhu, Xinqiang Wang, Zhen Huang, Baowen Zhou","doi":"10.1038/s41467-024-51810-y","DOIUrl":null,"url":null,"abstract":"<p><p>Photo-thermal-coupling ammonia decomposition presents a promising strategy for utilizing the full-spectrum to address the H<sub>2</sub> storage and transportation issues. Herein, we exhibit a photo-thermal-catalytic architecture by assembling gallium nitride nanowires-supported ruthenium nanoparticles on a silicon for extracting hydrogen from ammonia aqueous solution in a batch reactor with only sunlight input. The photoexcited charge carriers make a predomination contribution on H<sub>2</sub> activity with the assistance of the photothermal effect. Upon concentrated light illumination, the architecture significantly reduces the activation energy barrier from 1.08 to 0.22 eV. As a result, a high turnover number of 3,400,750 is reported during 400 h of continuous light illumination, and the H<sub>2</sub> activity per hour  is nearly 1000 times higher than that under the pure thermo-catalytic conditions. The reaction mechanism is extensively studied by coordinating experiments, spectroscopic characterizations, and density functional theory calculation. Outdoor tests validate the viability of such a multifunctional architecture for ammonia decomposition toward H<sub>2</sub> under natural sunlight.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51810-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-thermal-coupling ammonia decomposition presents a promising strategy for utilizing the full-spectrum to address the H2 storage and transportation issues. Herein, we exhibit a photo-thermal-catalytic architecture by assembling gallium nitride nanowires-supported ruthenium nanoparticles on a silicon for extracting hydrogen from ammonia aqueous solution in a batch reactor with only sunlight input. The photoexcited charge carriers make a predomination contribution on H2 activity with the assistance of the photothermal effect. Upon concentrated light illumination, the architecture significantly reduces the activation energy barrier from 1.08 to 0.22 eV. As a result, a high turnover number of 3,400,750 is reported during 400 h of continuous light illumination, and the H2 activity per hour  is nearly 1000 times higher than that under the pure thermo-catalytic conditions. The reaction mechanism is extensively studied by coordinating experiments, spectroscopic characterizations, and density functional theory calculation. Outdoor tests validate the viability of such a multifunctional architecture for ammonia decomposition toward H2 under natural sunlight.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在硅基氮化镓纳米线支撑的 Ru 纳米粒子上利用全光谱太阳光将氨分解为氢。
光热耦合氨分解是利用全光谱来解决氢气储存和运输问题的一种前景广阔的策略。在此,我们展示了一种光热催化结构,它将氮化镓纳米线支撑的钌纳米粒子组装在硅片上,在批量反应器中,只需输入阳光即可从氨水溶液中提取氢气。在光热效应的帮助下,光激发的电荷载流子对氢气活性做出了先导性贡献。在聚光照明下,该结构可将活化能垒从 1.08 eV 显著降至 0.22 eV。因此,在连续光照 400 小时后,报告的周转次数高达 3,400,750 次,每小时的 H2 活性是纯热催化条件下的近 1000 倍。通过协调实验、光谱表征和密度泛函理论计算,对反应机理进行了广泛研究。室外试验验证了这种多功能结构在自然光下分解氨产生 H2 的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A metagenomic catalogue of the ruminant gut archaeome. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Enhanced production of 60Fe in massive stars. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Ultrafast complete dechlorination enabled by ferrous oxide/graphene oxide catalytic membranes via nanoconfinement advanced reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1