Long range segmentation of prokaryotic genomes by gene age and functionality.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-10-14 DOI:10.1093/nar/gkae745
Yuri I Wolf, Ilya V Schurov, Kira S Makarova, Mikhail I Katsnelson, Eugene V Koonin
{"title":"Long range segmentation of prokaryotic genomes by gene age and functionality.","authors":"Yuri I Wolf, Ilya V Schurov, Kira S Makarova, Mikhail I Katsnelson, Eugene V Koonin","doi":"10.1093/nar/gkae745","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial and archaeal genomes encompass numerous operons that typically consist of two to five genes. On larger scales, however, gene order is poorly conserved through the evolution of prokaryotes. Nevertheless, non-random localization of different classes of genes on prokaryotic chromosomes could reflect important functional and evolutionary constraints. We explored the patterns of genomic localization of evolutionarily conserved (ancient) and variable (young) genes across the diversity of bacteria and archaea. Nearly all bacterial and archaeal chromosomes were found to encompass large segments of 100-300 kb that were significantly enriched in either ancient or young genes. Similar clustering of genes with lethal knockout phenotype (essential genes) was observed as well. Mathematical modeling of genome evolution suggests that this long-range gene clustering in prokaryotic chromosomes reflects perpetual genome rearrangement driven by a combination of selective and neutral processes rather than evolutionary conservation.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae745","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial and archaeal genomes encompass numerous operons that typically consist of two to five genes. On larger scales, however, gene order is poorly conserved through the evolution of prokaryotes. Nevertheless, non-random localization of different classes of genes on prokaryotic chromosomes could reflect important functional and evolutionary constraints. We explored the patterns of genomic localization of evolutionarily conserved (ancient) and variable (young) genes across the diversity of bacteria and archaea. Nearly all bacterial and archaeal chromosomes were found to encompass large segments of 100-300 kb that were significantly enriched in either ancient or young genes. Similar clustering of genes with lethal knockout phenotype (essential genes) was observed as well. Mathematical modeling of genome evolution suggests that this long-range gene clustering in prokaryotic chromosomes reflects perpetual genome rearrangement driven by a combination of selective and neutral processes rather than evolutionary conservation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据基因年龄和功能对原核生物基因组进行远距离分割。
细菌和古细菌的基因组包含许多操作子,通常由 2 到 5 个基因组成。然而,在更大的范围内,基因顺序在原核生物的进化过程中并没有得到很好的保护。不过,原核生物染色体上不同类别基因的非随机定位可能反映了重要的功能和进化限制。我们探索了细菌和古细菌多样性中进化保守(古老)和可变(年轻)基因的基因组定位模式。结果发现,几乎所有细菌和古细菌的染色体都包含100-300 kb的大片段,这些片段显著富含古老基因或年轻基因。此外,还观察到具有致死敲除表型的基因(必需基因)的类似聚类。基因组进化的数学模型表明,原核生物染色体中的这种长程基因聚类反映了选择性和中性过程共同驱动下的永久基因组重排,而不是进化保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. EXPRESSO: a multi-omics database to explore multi-layered 3D genomic organization. GCM and gcType in 2024: comprehensive resources for microbial strains and genomic data. Genomes OnLine Database (GOLD) v.10: new features and updates. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1