Modulating bacterial function utilizing A knowledge base of transcriptional regulatory modules.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-08-28 DOI:10.1093/nar/gkae742
Jongoh Shin, Daniel C Zielinski, Bernhard O Palsson
{"title":"Modulating bacterial function utilizing A knowledge base of transcriptional regulatory modules.","authors":"Jongoh Shin, Daniel C Zielinski, Bernhard O Palsson","doi":"10.1093/nar/gkae742","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic biology enables the reprogramming of cellular functions for various applications. However, challenges in scalability and predictability persist due to context-dependent performance and complex circuit-host interactions. This study introduces an iModulon-based engineering approach, utilizing machine learning-defined co-regulated gene groups (iModulons) as design parts containing essential genes for specific functions. This approach identifies the necessary components for genetic circuits across different contexts, enhancing genome engineering by improving target selection and predicting module behavior. We demonstrate several distinct uses of iModulons: (i) discovery of unknown iModulons to increase protein productivity, heat tolerance and fructose utilization; (ii) an iModulon boosting approach, which amplifies the activity of specific iModulons, improved cell growth under osmotic stress with minimal host regulation disruption; (iii) an iModulon rebalancing strategy, which adjusts the activity levels of iModulons to balance cellular functions, significantly increased oxidative stress tolerance while minimizing trade-offs and (iv) iModulon-based gene annotation enabled natural competence activation by predictably rewiring iModulons. Comparative experiments with traditional methods showed our approach offers advantages in efficiency and predictability of strain engineering. This study demonstrates the potential of iModulon-based strategies to systematically and predictably reprogram cellular functions, offering refined and adaptable control over complex regulatory networks.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae742","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic biology enables the reprogramming of cellular functions for various applications. However, challenges in scalability and predictability persist due to context-dependent performance and complex circuit-host interactions. This study introduces an iModulon-based engineering approach, utilizing machine learning-defined co-regulated gene groups (iModulons) as design parts containing essential genes for specific functions. This approach identifies the necessary components for genetic circuits across different contexts, enhancing genome engineering by improving target selection and predicting module behavior. We demonstrate several distinct uses of iModulons: (i) discovery of unknown iModulons to increase protein productivity, heat tolerance and fructose utilization; (ii) an iModulon boosting approach, which amplifies the activity of specific iModulons, improved cell growth under osmotic stress with minimal host regulation disruption; (iii) an iModulon rebalancing strategy, which adjusts the activity levels of iModulons to balance cellular functions, significantly increased oxidative stress tolerance while minimizing trade-offs and (iv) iModulon-based gene annotation enabled natural competence activation by predictably rewiring iModulons. Comparative experiments with traditional methods showed our approach offers advantages in efficiency and predictability of strain engineering. This study demonstrates the potential of iModulon-based strategies to systematically and predictably reprogram cellular functions, offering refined and adaptable control over complex regulatory networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用转录调控模块知识库调节细菌功能。
合成生物学能够为各种应用重新编程细胞功能。然而,由于性能取决于上下文和复杂的电路-主机相互作用,可扩展性和可预测性方面的挑战依然存在。本研究介绍了一种基于 iModulon 的工程方法,利用机器学习定义的共调基因组(iModulons)作为设计部件,其中包含特定功能的重要基因。这种方法能识别不同背景下基因回路的必要组成部分,通过改进目标选择和预测模块行为来加强基因组工程。我们展示了 iModulons 的几种不同用途:(i) 发现未知的 iModulons,提高蛋白质生产率、耐热性和果糖利用率;(ii) iModulon 增强方法,放大特定 iModulons 的活性,改善细胞在渗透压胁迫下的生长,同时将宿主调控破坏降到最低;(iii) iModulon 再平衡策略可调整 iModulons 的活性水平以平衡细胞功能,从而显著提高氧化应激耐受性,同时最大限度地减少权衡;以及 (iv) 基于 iModulon 的基因注释可通过可预测的 iModulons 重接线实现自然能力激活。与传统方法的比较实验表明,我们的方法在应变工程的效率和可预测性方面具有优势。这项研究表明,基于 iModulon 的策略具有系统性和可预测性重编程细胞功能的潜力,可对复杂的调控网络进行精细和适应性控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
High-throughput single telomere analysis using DNA microarray and fluorescent in situ hybridization DciA secures bidirectional replication initiation in Vibrio cholerae Correction to 'Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria'. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells Correction to 'Advancing quantitative PCR with color cycle multiplex amplification'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1