Long-term (10-year) monitoring of transposon-mediated transgenic cattle.

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Transgenic Research Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI:10.1007/s11248-024-00401-0
Soo-Young Yum, Bae Young Choi, Gyeong-Min Gim, Kyeong-Hyeon Eom, Seong-Beom Lee, Daehyun Kim, Euntaek Lim, Do-Yoon Kim, Seong-Eun Heo, Donghwan Shim, Goo Jang
{"title":"Long-term (10-year) monitoring of transposon-mediated transgenic cattle.","authors":"Soo-Young Yum, Bae Young Choi, Gyeong-Min Gim, Kyeong-Hyeon Eom, Seong-Beom Lee, Daehyun Kim, Euntaek Lim, Do-Yoon Kim, Seong-Eun Heo, Donghwan Shim, Goo Jang","doi":"10.1007/s11248-024-00401-0","DOIUrl":null,"url":null,"abstract":"<p><p>The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing. We found no significant alterations in physiological parameters or health complications in transposon-mediated transgenic cattle that exceeded 10 years of age. Genomic analysis revealed that the rates of somatic mutations and copy number variations in transgenic cattle were comparable to those in non-transgenic cattle. Furthermore, structural variants were infrequent, suggesting that transposon-mediated gene insertion did not compromise genomic integrity. These findings highlight the viability of transposon systems for generating transgenic livestock, potentially expanding their applications in agriculture and biotechnology. This study contributes significantly to our understanding of the long-term implications of transgenesis in large animals and supports the safety and stability of this method.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"503-512"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-024-00401-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing. We found no significant alterations in physiological parameters or health complications in transposon-mediated transgenic cattle that exceeded 10 years of age. Genomic analysis revealed that the rates of somatic mutations and copy number variations in transgenic cattle were comparable to those in non-transgenic cattle. Furthermore, structural variants were infrequent, suggesting that transposon-mediated gene insertion did not compromise genomic integrity. These findings highlight the viability of transposon systems for generating transgenic livestock, potentially expanding their applications in agriculture and biotechnology. This study contributes significantly to our understanding of the long-term implications of transgenesis in large animals and supports the safety and stability of this method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对转座子介导的转基因牛进行长期(10 年)监测。
使用非病毒方法生产转基因动物引发了有关其长期健康和基因组稳定性的问题。在这项研究中,我们利用转座子介导的基因转移技术,对转基因牛十年来的这些方面进行了评估。我们的纵向分析包括全面的健康评估和全基因组 DNA 重测序。我们发现,转座子介导的转基因牛在超过 10 岁后,生理参数或健康并发症没有发生明显变化。基因组分析表明,转基因牛的体细胞突变率和拷贝数变异率与非转基因牛相当。此外,结构变异也不常见,这表明转座子介导的基因插入不会损害基因组的完整性。这些发现凸显了转座子系统在产生转基因家畜方面的可行性,有可能扩大其在农业和生物技术领域的应用。这项研究大大有助于我们了解转基因对大型动物的长期影响,并支持这种方法的安全性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
期刊最新文献
Effect of transgene on salt tolerance of tobacco. Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae. Development of a new flippase-dependent mouse model for red fluorescence-based isolation of KRASG12D oncogene-expressing tumor cells. Expression of Agrobacterium Isopentenyl transferase (IPT) gene in wheat improves drought tolerance. NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1