Determination of antibacterial and anti-biofilm activities of Terpinen-4-ol loaded polydopamine nanoparticles against Staphylococcus aureus isolates from cows with subclinical mastitis.
{"title":"Determination of antibacterial and anti-biofilm activities of Terpinen-4-ol loaded polydopamine nanoparticles against Staphylococcus aureus isolates from cows with subclinical mastitis.","authors":"Nilgün Ünal, Merve Eylul Kiymaci, Merve Savluk, Hakan Erdogan, Esra Seker","doi":"10.1007/s11259-024-10514-w","DOIUrl":null,"url":null,"abstract":"<p><p>Mastitis in cows is one of the most important diseases that give rise to economic losses in dairy farms. Increasing antimicrobial resistance in Staphylococcus aureus, one of the most common causes of mastitis, is a significant health problem. Due to the problems encountered in treating infections caused by resistant strains, developing alternative treatment methods, such as Nanomaterial systems and natural agents, are important. The essential oil of Melaleuca alternifolia is used as an antibacterial and the primary active component is terpinen-4-ol. This study aimed to investigate the antibacterial and anti-biofilm activity of terpinen-4-ol and terpinen-4-ol loaded polydopamine (T-PDA) nanoparticles against S. aureus isolates, which were resistant to at least one group of antibiotics isolated from milk samples of subclinical mastitis cows. The S. aureus strains were identified by biochemical tests and verified with the API Staph kit. The antibiotic susceptibility of the isolates was determined by the disc diffusion method. The broth microdilution method determined the antimicrobial activities of the terpinen-4-ol and T-PDA nanoparticles, and anti-biofilm activities were assessed using the modified crystal violet method. All of the isolates were resistant to benzylpenicillin and susceptible to trimethoprim/sulfamethoxazole. Multi-antibiotic resistance was detected in the 11 S. aureus isolates used in this study. For the terpinen-4-ol and T-PDA nanoparticles, MIC values were determined in the range of 0.125-0.5% (µL/mL) and 0.125-0.25% (µL/mL), respectively. None of the isolates formed biofilms. As a result, it was found that the antibacterial efficacy of the T- PDA nanoparticles was higher against nine of the S. aureus isolates than against the terpinen-4-ol.</p>","PeriodicalId":23690,"journal":{"name":"Veterinary Research Communications","volume":" ","pages":"3655-3668"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research Communications","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11259-024-10514-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mastitis in cows is one of the most important diseases that give rise to economic losses in dairy farms. Increasing antimicrobial resistance in Staphylococcus aureus, one of the most common causes of mastitis, is a significant health problem. Due to the problems encountered in treating infections caused by resistant strains, developing alternative treatment methods, such as Nanomaterial systems and natural agents, are important. The essential oil of Melaleuca alternifolia is used as an antibacterial and the primary active component is terpinen-4-ol. This study aimed to investigate the antibacterial and anti-biofilm activity of terpinen-4-ol and terpinen-4-ol loaded polydopamine (T-PDA) nanoparticles against S. aureus isolates, which were resistant to at least one group of antibiotics isolated from milk samples of subclinical mastitis cows. The S. aureus strains were identified by biochemical tests and verified with the API Staph kit. The antibiotic susceptibility of the isolates was determined by the disc diffusion method. The broth microdilution method determined the antimicrobial activities of the terpinen-4-ol and T-PDA nanoparticles, and anti-biofilm activities were assessed using the modified crystal violet method. All of the isolates were resistant to benzylpenicillin and susceptible to trimethoprim/sulfamethoxazole. Multi-antibiotic resistance was detected in the 11 S. aureus isolates used in this study. For the terpinen-4-ol and T-PDA nanoparticles, MIC values were determined in the range of 0.125-0.5% (µL/mL) and 0.125-0.25% (µL/mL), respectively. None of the isolates formed biofilms. As a result, it was found that the antibacterial efficacy of the T- PDA nanoparticles was higher against nine of the S. aureus isolates than against the terpinen-4-ol.
期刊介绍:
Veterinary Research Communications publishes fully refereed research articles and topical reviews on all aspects of the veterinary sciences. Interdisciplinary articles are particularly encouraged, as are well argued reviews, even if they are somewhat controversial.
The journal is an appropriate medium in which to publish new methods, newly described diseases and new pathological findings, as these are applied to animals. The material should be of international rather than local interest. As it deliberately seeks a wide coverage, Veterinary Research Communications provides its readers with a means of keeping abreast of current developments in the entire field of veterinary science.