Artificial Intelligence (AI) and Nuclear Features from the Fine Needle Aspirated (FNA) Tissue Samples to Recognize Breast Cancer.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-08-19 DOI:10.3390/jimaging10080201
Rumana Islam, Mohammed Tarique
{"title":"Artificial Intelligence (AI) and Nuclear Features from the Fine Needle Aspirated (FNA) Tissue Samples to Recognize Breast Cancer.","authors":"Rumana Islam, Mohammed Tarique","doi":"10.3390/jimaging10080201","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the paramount causes of new cancer cases worldwide annually. It is a malignant neoplasm that develops in the breast cells. The early screening of this disease is essential to prevent its metastasis. A mammogram X-ray image is the most common screening tool practiced currently when this disease is suspected; all the breast lesions identified are not malignant. The invasive fine needle aspiration (FNA) of a breast mass sample is the secondary screening tool to clinically examine cancerous lesions. The visual image analysis of the stained aspirated sample imposes a challenge for the cytologist to identify the malignant cells accurately. The formulation of an artificial intelligence-based objective technique on top of the introspective assessment is essential to avoid misdiagnosis. This paper addresses several artificial intelligence (AI)-based techniques to diagnose breast cancer from the nuclear features of FNA samples. The Wisconsin Breast Cancer dataset (WBCD) from the UCI machine learning repository is applied for this investigation. Significant statistical parameters are measured to evaluate the performance of the proposed techniques. The best detection accuracy of 98.10% is achieved with a two-layer feed-forward neural network (FFNN). Finally, the developed algorithm's performance is compared with some state-of-the-art works in the literature.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10080201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is one of the paramount causes of new cancer cases worldwide annually. It is a malignant neoplasm that develops in the breast cells. The early screening of this disease is essential to prevent its metastasis. A mammogram X-ray image is the most common screening tool practiced currently when this disease is suspected; all the breast lesions identified are not malignant. The invasive fine needle aspiration (FNA) of a breast mass sample is the secondary screening tool to clinically examine cancerous lesions. The visual image analysis of the stained aspirated sample imposes a challenge for the cytologist to identify the malignant cells accurately. The formulation of an artificial intelligence-based objective technique on top of the introspective assessment is essential to avoid misdiagnosis. This paper addresses several artificial intelligence (AI)-based techniques to diagnose breast cancer from the nuclear features of FNA samples. The Wisconsin Breast Cancer dataset (WBCD) from the UCI machine learning repository is applied for this investigation. Significant statistical parameters are measured to evaluate the performance of the proposed techniques. The best detection accuracy of 98.10% is achieved with a two-layer feed-forward neural network (FFNN). Finally, the developed algorithm's performance is compared with some state-of-the-art works in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能(AI)与细针抽吸(FNA)组织样本中的核特征识别乳腺癌。
乳腺癌是全球每年新增癌症病例的主要原因之一。它是一种发生在乳腺细胞中的恶性肿瘤。对这种疾病进行早期筛查对于防止其转移至关重要。乳房 X 射线造影是目前最常用的筛查工具,当怀疑患有这种疾病时,所有发现的乳房病变都不是恶性的。乳房肿块样本的侵入性细针穿刺术(FNA)是临床上检查癌症病灶的辅助筛查工具。对抽吸出的染色样本进行视觉图像分析是细胞学专家准确识别恶性细胞的一项挑战。在内省评估的基础上,制定一种基于人工智能的客观技术对于避免误诊至关重要。本文探讨了几种基于人工智能(AI)的技术,以从 FNA 样本的核特征诊断乳腺癌。本研究采用了 UCI 机器学习库中的威斯康星乳腺癌数据集(WBCD)。对重要的统计参数进行了测量,以评估所建议技术的性能。双层前馈神经网络(FFNN)的最佳检测准确率为 98.10%。最后,将所开发算法的性能与文献中一些最先进的作品进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
AQSA-Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices. Editorial on the Special Issue "Fluorescence Imaging and Analysis of Cellular Systems". Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath. Anatomical Characteristics of Cervicomedullary Compression on MRI Scans in Children with Achondroplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1