{"title":"RailTrack-DaViT: A Vision Transformer-Based Approach for Automated Railway Track Defect Detection.","authors":"Aniwat Phaphuangwittayakul, Napat Harnpornchai, Fangli Ying, Jinming Zhang","doi":"10.3390/jimaging10080192","DOIUrl":null,"url":null,"abstract":"<p><p>Railway track defects pose significant safety risks and can lead to accidents, economic losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly, or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling accurate defect detection. The model is trained and evaluated on multiple datasets including rail, fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model's performance is provided including confusion matrices, training visualizations, and classification metrics. RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based methods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better model stability during fine-tuning. This capability can significantly reduce time consumption when applying the model to novel datasets in practical applications.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10080192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Railway track defects pose significant safety risks and can lead to accidents, economic losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly, or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling accurate defect detection. The model is trained and evaluated on multiple datasets including rail, fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model's performance is provided including confusion matrices, training visualizations, and classification metrics. RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based methods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better model stability during fine-tuning. This capability can significantly reduce time consumption when applying the model to novel datasets in practical applications.