{"title":"Evolutionary optimization for risk-aware heterogeneous multi-agent path planning in uncertain environments.","authors":"Fatemeh Rekabi Bana, Tomáš Krajník, Farshad Arvin","doi":"10.3389/frobt.2024.1375393","DOIUrl":null,"url":null,"abstract":"<p><p>Cooperative multi-agent systems make it possible to employ miniature robots in order to perform different experiments for data collection in wide open areas to physical interactions with test subjects in confined environments such as a hive. This paper proposes a new multi-agent path-planning approach to determine a set of trajectories where the agents do not collide with each other or any obstacle. The proposed algorithm leverages a risk-aware probabilistic roadmap algorithm to generate a map, employs node classification to delineate exploration regions, and incorporates a customized genetic framework to address the combinatorial optimization, with the ultimate goal of computing safe trajectories for the team. Furthermore, the proposed planning algorithm makes the agents explore all subdomains in the workspace together as a formation to allow the team to perform different tasks or collect multiple datasets for reliable localization or hazard detection. The objective function for minimization includes two major parts, the traveling distance of all the agents in the entire mission and the probability of collisions between the agents or agents with obstacles. A sampling method is used to determine the objective function considering the agents' dynamic behavior influenced by environmental disturbances and uncertainties. The algorithm's performance is evaluated for different group sizes by using a simulation environment, and two different benchmark scenarios are introduced to compare the exploration behavior. The proposed optimization method establishes stable and convergent properties regardless of the group size.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1375393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative multi-agent systems make it possible to employ miniature robots in order to perform different experiments for data collection in wide open areas to physical interactions with test subjects in confined environments such as a hive. This paper proposes a new multi-agent path-planning approach to determine a set of trajectories where the agents do not collide with each other or any obstacle. The proposed algorithm leverages a risk-aware probabilistic roadmap algorithm to generate a map, employs node classification to delineate exploration regions, and incorporates a customized genetic framework to address the combinatorial optimization, with the ultimate goal of computing safe trajectories for the team. Furthermore, the proposed planning algorithm makes the agents explore all subdomains in the workspace together as a formation to allow the team to perform different tasks or collect multiple datasets for reliable localization or hazard detection. The objective function for minimization includes two major parts, the traveling distance of all the agents in the entire mission and the probability of collisions between the agents or agents with obstacles. A sampling method is used to determine the objective function considering the agents' dynamic behavior influenced by environmental disturbances and uncertainties. The algorithm's performance is evaluated for different group sizes by using a simulation environment, and two different benchmark scenarios are introduced to compare the exploration behavior. The proposed optimization method establishes stable and convergent properties regardless of the group size.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.