Meseret A Wondifraw, Zachary J Winn, Scott D Haley, John A Stromberger, Emily E Hudson-Arns, R Esten Mason
{"title":"Elucidation of the genetic architecture of water absorption capacity in hard winter wheat through genome wide association study.","authors":"Meseret A Wondifraw, Zachary J Winn, Scott D Haley, John A Stromberger, Emily E Hudson-Arns, R Esten Mason","doi":"10.1002/tpg2.20500","DOIUrl":null,"url":null,"abstract":"<p><p>Water absorption capacity (WAC) influences various aspects of bread making, such as loaf volume, bread yield, and shelf life. Despite its importance in the baking process and end-product quality, its genetic determinants are less explored. To address this limitation, a genome-wide association study was conducted on 337 hard wheat (Triticum aestivum L.) genotypes evaluated over 5 years in multi-environmental trials. Phenotyping was done using the solvent retention capacity (SRC) test with water (SRC-water), sucrose (SRC-sucrose), lactic acid (SRC-lactic acid), and sodium carbonate (SRC-carbonate) as solvents. Individuals were genotyped using genotyping-by-sequencing to detect single nucleotide polymorphisms across the wheat genome. To detect the genomic regions that underline the SRCs and gluten performance index (GPI), a genome-wide association study was performed using six multi-locus models using the mrMLM package in R. Adjusted means for SRC-water ranged from 54.1% to 66.5%, while SRC-carbonate exhibited a narrow range from 84.9% to 93.9%. Moderate to high genomic heritability values were observed for SRCs and GPI, ranging from h<sup>2 </sup>= 0.61 to 0.88. The genome-wide association study identified a total of 42 quantitative trait nucleotides (QTNs), of which five explained over 10% of the phenotypic variation (R<sup>2</sup> ≥ 10%). Most of the QTNs were detected on chromosomes 1A, 1B, 3B, and 5B. Few QTNs, such as S1A_5190318, S1B_3282665, S4D_472908721, and S7A_37433960, were located near gliadin, glutenin starch synthesis, and galactosyltransferase genes. Overall, these results show WAC to be under polygenic genetic control, with genes involved in the synthesis of key flour components influencing overall water absorption.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20500"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20500","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Water absorption capacity (WAC) influences various aspects of bread making, such as loaf volume, bread yield, and shelf life. Despite its importance in the baking process and end-product quality, its genetic determinants are less explored. To address this limitation, a genome-wide association study was conducted on 337 hard wheat (Triticum aestivum L.) genotypes evaluated over 5 years in multi-environmental trials. Phenotyping was done using the solvent retention capacity (SRC) test with water (SRC-water), sucrose (SRC-sucrose), lactic acid (SRC-lactic acid), and sodium carbonate (SRC-carbonate) as solvents. Individuals were genotyped using genotyping-by-sequencing to detect single nucleotide polymorphisms across the wheat genome. To detect the genomic regions that underline the SRCs and gluten performance index (GPI), a genome-wide association study was performed using six multi-locus models using the mrMLM package in R. Adjusted means for SRC-water ranged from 54.1% to 66.5%, while SRC-carbonate exhibited a narrow range from 84.9% to 93.9%. Moderate to high genomic heritability values were observed for SRCs and GPI, ranging from h2 = 0.61 to 0.88. The genome-wide association study identified a total of 42 quantitative trait nucleotides (QTNs), of which five explained over 10% of the phenotypic variation (R2 ≥ 10%). Most of the QTNs were detected on chromosomes 1A, 1B, 3B, and 5B. Few QTNs, such as S1A_5190318, S1B_3282665, S4D_472908721, and S7A_37433960, were located near gliadin, glutenin starch synthesis, and galactosyltransferase genes. Overall, these results show WAC to be under polygenic genetic control, with genes involved in the synthesis of key flour components influencing overall water absorption.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.