{"title":"A Review of 3D Modalities Used for the Diagnosis of Scoliosis.","authors":"Sampath Kumar, Bhaskar Awadhiya, Rahul Ratnakumar, Ananthakrishna Thalengala, Anu Shaju Areeckal, Yashwanth Nanjappa","doi":"10.3390/tomography10080090","DOIUrl":null,"url":null,"abstract":"<p><p>Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 8","pages":"1192-1204"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10080090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.