Incremental Prognostic Value of Coronary Hyper-intensity Plaque on Non-contrast Cardiac Magnetic Resonance with Global Longitudinal Strain for Major Adverse Cardiac Events in Patients with Acute Coronary Syndrome.
Yumeng Sun, Wen Liu, Haiyang Xu, Lu Li, Tingting Li, Zhenjia Wang, Wei Yu, Yibin Xie, Debiao Li
{"title":"Incremental Prognostic Value of Coronary Hyper-intensity Plaque on Non-contrast Cardiac Magnetic Resonance with Global Longitudinal Strain for Major Adverse Cardiac Events in Patients with Acute Coronary Syndrome.","authors":"Yumeng Sun, Wen Liu, Haiyang Xu, Lu Li, Tingting Li, Zhenjia Wang, Wei Yu, Yibin Xie, Debiao Li","doi":"10.1016/j.acra.2024.08.031","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This study aims to determine the long-term prognostic value of coronary hyper-intensity plaques and left ventricular (LV) myocardial strain for major adverse cardiac events (MACEs).</p><p><strong>Materials and methods: </strong>The study prospectively recruited 71 patients with acute coronary syndrome (ACS). All patients underwent CMR before PCI to determine the plaque-to-myocardium signal intensity ratio and LV strains. The MACEs included all-cause death, reinfarction, and new congestive heart failure. Mann-Whitney U test and chi-square test to compare patients with and without MACE, Kaplan-Meier survival analysis, Cox proportional hazards regression and C-statistics to assess prognosis, Receiver-operating characteristic (ROC) curve analysis to define the cutoff value. A P value of < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>Cox proportional hazard analysis showed that plaque-to-myocardium signal intensity ratio and global longitudinal strain (GLS) were independently associated with MACEs (plaque-to-myocardium signal intensity ratio: hazard ratio (HR) 2.80, 95% CI, 1.25-6.26, P = 0.01; GLS: HR1.21, 95% CI, 1.07-1.38, P<0.01). ROC showed that a plaque-to-myocardium signal intensity ratio of 1.65 and a GLS of -10% were the best cutoff values for MACEs. The C-statistic values for plaque-to-myocardium signal intensity ratio, GLS, and plaque-to-myocardium signal intensity ratio+GLS for MACEs were 0.691, 0.792, and 0.825, respectively. Compared to GLS alone, the addition of plaque-to-myocardium signal intensity ratio to GLS increased the net reclassification index by 0.664 (P = 0.017).</p><p><strong>Conclusion: </strong>Plaque-to-myocardium signal intensity ratio and GLS were significantly associated with MACEs. Adding plaque-to-myocardium signal intensity ratio to GLS substantially improved the prediction for MACEs. Our findings indicate that plaque-to-myocardium signal intensity ratio combined with GLS provides incremental prognostic value for MACEs.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":"102-111"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.08.031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: This study aims to determine the long-term prognostic value of coronary hyper-intensity plaques and left ventricular (LV) myocardial strain for major adverse cardiac events (MACEs).
Materials and methods: The study prospectively recruited 71 patients with acute coronary syndrome (ACS). All patients underwent CMR before PCI to determine the plaque-to-myocardium signal intensity ratio and LV strains. The MACEs included all-cause death, reinfarction, and new congestive heart failure. Mann-Whitney U test and chi-square test to compare patients with and without MACE, Kaplan-Meier survival analysis, Cox proportional hazards regression and C-statistics to assess prognosis, Receiver-operating characteristic (ROC) curve analysis to define the cutoff value. A P value of < 0.05 was considered statistically significant.
Results: Cox proportional hazard analysis showed that plaque-to-myocardium signal intensity ratio and global longitudinal strain (GLS) were independently associated with MACEs (plaque-to-myocardium signal intensity ratio: hazard ratio (HR) 2.80, 95% CI, 1.25-6.26, P = 0.01; GLS: HR1.21, 95% CI, 1.07-1.38, P<0.01). ROC showed that a plaque-to-myocardium signal intensity ratio of 1.65 and a GLS of -10% were the best cutoff values for MACEs. The C-statistic values for plaque-to-myocardium signal intensity ratio, GLS, and plaque-to-myocardium signal intensity ratio+GLS for MACEs were 0.691, 0.792, and 0.825, respectively. Compared to GLS alone, the addition of plaque-to-myocardium signal intensity ratio to GLS increased the net reclassification index by 0.664 (P = 0.017).
Conclusion: Plaque-to-myocardium signal intensity ratio and GLS were significantly associated with MACEs. Adding plaque-to-myocardium signal intensity ratio to GLS substantially improved the prediction for MACEs. Our findings indicate that plaque-to-myocardium signal intensity ratio combined with GLS provides incremental prognostic value for MACEs.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.