{"title":"Tackling hepatitis B Virus with CRISPR/Cas9: advances, challenges, and delivery strategies.","authors":"Dakshina M Nair, Leela Kakithakara Vajravelu, Jayaprakash Thulukanam, Vishnupriya Paneerselvam, Poornima Baskar Vimala, Rahul Harikumar Lathakumari","doi":"10.1007/s11262-024-02105-3","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis B virus (HBV) infection remains a significant global health challenge, with chronic HBV leading to severe liver diseases, including cirrhosis and hepatocellular carcinoma. Current treatments often fail to eradicate the virus, highlighting the need for innovative therapeutic strategies. The CRISPR/Cas9 system has emerged as a dynamic tool for precise genome editing and presents a promising approach to targeting and eliminating HBV infection. This review provides a comprehensive overview of the advances, challenges, and delivery strategies associated with CRISPR/Cas9-based therapies for HBV. We begin by elucidating the mechanism of the CRISPR/Cas9 system and then explore HBV pathogenesis, focusing on the role of covalently closed circular DNA (cccDNA) and integrated HBV DNA in maintaining chronic infection. CRISPR/Cas9 can disrupt these key viral reservoirs, which are critical for persistent HBV replication and associated liver damage. The application of CRISPR/Cas9 in HBV treatment faces significant challenges, such as off-target effects, delivery efficiency, and immune responses. These challenges are addressed by examining current approaches to enhance the specificity, safety, and efficacy of CRISPR/Cas9. A future perspective on the development and clinical translation of CRISPR/Cas9 therapies for HBV is provided, emphasizing the requirement for further research to improve delivery methods and ensure durable safety and effectiveness. This review underscores the transformative potential of CRISPR/Cas9 in combating HBV and sets the stage for future breakthroughs in the field.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"592-602"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02105-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, with chronic HBV leading to severe liver diseases, including cirrhosis and hepatocellular carcinoma. Current treatments often fail to eradicate the virus, highlighting the need for innovative therapeutic strategies. The CRISPR/Cas9 system has emerged as a dynamic tool for precise genome editing and presents a promising approach to targeting and eliminating HBV infection. This review provides a comprehensive overview of the advances, challenges, and delivery strategies associated with CRISPR/Cas9-based therapies for HBV. We begin by elucidating the mechanism of the CRISPR/Cas9 system and then explore HBV pathogenesis, focusing on the role of covalently closed circular DNA (cccDNA) and integrated HBV DNA in maintaining chronic infection. CRISPR/Cas9 can disrupt these key viral reservoirs, which are critical for persistent HBV replication and associated liver damage. The application of CRISPR/Cas9 in HBV treatment faces significant challenges, such as off-target effects, delivery efficiency, and immune responses. These challenges are addressed by examining current approaches to enhance the specificity, safety, and efficacy of CRISPR/Cas9. A future perspective on the development and clinical translation of CRISPR/Cas9 therapies for HBV is provided, emphasizing the requirement for further research to improve delivery methods and ensure durable safety and effectiveness. This review underscores the transformative potential of CRISPR/Cas9 in combating HBV and sets the stage for future breakthroughs in the field.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.