Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.345
Anna Busatto, Lindsay C Rupp, Karli Gillette, Akil Narayan, Gernot Plank, Rob S MacLeod
{"title":"Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification.","authors":"Anna Busatto, Lindsay C Rupp, Karli Gillette, Akil Narayan, Gernot Plank, Rob S MacLeod","doi":"10.22489/cinc.2023.345","DOIUrl":null,"url":null,"abstract":"<p><p>Individual variability in parameter settings, due to either user selection or disease states, can impact accuracy when simulating the electrical behavior of the heart. Here, we aim to test the impact of inevitable uncertainty in conduction velocities (CVs) on the output of simulations of cardiac propagation, given three stimulus locations on the left ventricular (LV) free wall. To understand the role of physiological variability in CV in simulations of cardiac activation, we generated detailed maps of the variability in propagation simulations by implementing bi-ventricular activation simulations and quantified the effects by deploying robust uncertainty quantification techniques based on polynomial chaos expansion (PCE). PCE allows efficient stochastic exploration with reduced computational demand by utilizing an emulator for the underlying forward model. Our results suggest that CV within healthy physiological ranges plays a small role in the activation times across all stimulation locations. However, we noticed differences in variation coefficients depending on the stimulation site, i.e., LV endocardium, midmyocardium, and epicardium. We observed low levels of variation in activation times near the earliest activation sites, whereas there was higher variation toward the termination sites. These results suggest that CV variability can play a role when simulating healthy and diseased states.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Individual variability in parameter settings, due to either user selection or disease states, can impact accuracy when simulating the electrical behavior of the heart. Here, we aim to test the impact of inevitable uncertainty in conduction velocities (CVs) on the output of simulations of cardiac propagation, given three stimulus locations on the left ventricular (LV) free wall. To understand the role of physiological variability in CV in simulations of cardiac activation, we generated detailed maps of the variability in propagation simulations by implementing bi-ventricular activation simulations and quantified the effects by deploying robust uncertainty quantification techniques based on polynomial chaos expansion (PCE). PCE allows efficient stochastic exploration with reduced computational demand by utilizing an emulator for the underlying forward model. Our results suggest that CV within healthy physiological ranges plays a small role in the activation times across all stimulation locations. However, we noticed differences in variation coefficients depending on the stimulation site, i.e., LV endocardium, midmyocardium, and epicardium. We observed low levels of variation in activation times near the earliest activation sites, whereas there was higher variation toward the termination sites. These results suggest that CV variability can play a role when simulating healthy and diseased states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不确定性量化捕捉传导速度对心外膜激活模式的影响
用户选择或疾病状态导致的参数设置个体差异会影响模拟心脏电行为时的准确性。在此,我们旨在测试左心室(LV)游离壁上三个刺激位置的传导速度(CV)不可避免的不确定性对模拟心脏传播输出的影响。为了解传导速度的生理变异性在心脏激活模拟中的作用,我们通过实施双心室激活模拟生成了传播模拟变异性的详细图谱,并通过部署基于多项式混沌扩展(PCE)的稳健不确定性量化技术对其影响进行了量化。PCE 通过利用底层前向模型的仿真器,实现了高效的随机探索,并降低了计算需求。我们的结果表明,健康生理范围内的 CV 在所有刺激位置的激活时间中作用很小。然而,我们注意到不同刺激部位(即左心室心内膜、心肌中层和心外膜)的变异系数存在差异。我们观察到最早激活部位附近的激活时间变异程度较低,而终止部位的变异程度较高。这些结果表明,在模拟健康和疾病状态时,CV 变异可能会发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1