Greedy identification of latent dynamics from parametric flow data

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-08-27 DOI:10.1016/j.cma.2024.117332
{"title":"Greedy identification of latent dynamics from parametric flow data","authors":"","doi":"10.1016/j.cma.2024.117332","DOIUrl":null,"url":null,"abstract":"<div><p>Projection-based reduced-order models (ROMs) play a crucial role in simplifying the complex dynamics of fluid systems. Such models are achieved by projecting the Navier-Stokes equations onto a lower-dimensional subspace while preserving essential dynamics. However, this approach requires prior knowledge of the underlying high-fidelity model, limiting its effectiveness when applied to black-box data. This article introduces a novel, non-intrusive, data-driven method–Greedy Identification of Latent Dynamics (GILD)–for constructing parametric fluid ROMs. Unlike traditional methods, GILD constructs models directly from data, without relying on specific high-fidelity model information. It also employs interpolation within the manifold <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow><mrow><mi>N</mi><mo>×</mo><mi>q</mi></mrow></msubsup><mo>/</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> to accommodate parameter variability. Numerical experiments on various fluid dynamics scenarios, including lid-driven cavity flow, flow past a cylinder with varying Reynolds number, and Ahmed body flow with variable geometry, demonstrate GILD’s robust performance across both training and unseen parameter values. GILD’s ability to accurately capture system dynamics and its adaptability to diverse data sources highlight its potential as a powerful tool for constructing parametric reduced-order models in an easy and general way for complex fluid dynamics and beyond.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005875","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Projection-based reduced-order models (ROMs) play a crucial role in simplifying the complex dynamics of fluid systems. Such models are achieved by projecting the Navier-Stokes equations onto a lower-dimensional subspace while preserving essential dynamics. However, this approach requires prior knowledge of the underlying high-fidelity model, limiting its effectiveness when applied to black-box data. This article introduces a novel, non-intrusive, data-driven method–Greedy Identification of Latent Dynamics (GILD)–for constructing parametric fluid ROMs. Unlike traditional methods, GILD constructs models directly from data, without relying on specific high-fidelity model information. It also employs interpolation within the manifold RN×q/Oq to accommodate parameter variability. Numerical experiments on various fluid dynamics scenarios, including lid-driven cavity flow, flow past a cylinder with varying Reynolds number, and Ahmed body flow with variable geometry, demonstrate GILD’s robust performance across both training and unseen parameter values. GILD’s ability to accurately capture system dynamics and its adaptability to diverse data sources highlight its potential as a powerful tool for constructing parametric reduced-order models in an easy and general way for complex fluid dynamics and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从参数流量数据中贪婪地识别潜在动力学
基于投影的降阶模型(ROM)在简化流体系统的复杂动力学过程中发挥着至关重要的作用。这种模型是通过将纳维-斯托克斯方程投影到低维子空间而实现的,同时保留了基本的动力学特性。然而,这种方法需要预先了解底层高保真模型,因此在应用于黑箱数据时效果有限。本文介绍了一种新颖的、非侵入式的、数据驱动的方法--潜在动力学自由识别(GILD)--用于构建参数流体 ROM。与传统方法不同,GILD 直接从数据中构建模型,而不依赖于特定的高保真模型信息。它还在流形 R∗N×q/Oq 内采用插值法,以适应参数的可变性。在各种流体动力学场景下进行的数值实验证明了 GILD 在训练值和未见参数值下的稳健性能,这些场景包括盖子驱动的空腔流、流经具有不同雷诺数的圆柱体以及具有不同几何形状的艾哈迈德体流。GILD 能够准确捕捉系统动力学特性,并能适应各种数据源,这凸显了它作为一种强大工具的潜力,它能以简单、通用的方式为复杂流体动力学及其他领域构建参数化的降阶模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1