Exploring the interplay of T cell receptor-V gene copy numbers and major histocompatibility complex selection pressure in avian species: Insights into immune system evolution and reproductive investment
Lin Sun , Chunhong Liang , Shidi Qin , Ying Zhu , Ke He
{"title":"Exploring the interplay of T cell receptor-V gene copy numbers and major histocompatibility complex selection pressure in avian species: Insights into immune system evolution and reproductive investment","authors":"Lin Sun , Chunhong Liang , Shidi Qin , Ying Zhu , Ke He","doi":"10.1016/j.avrs.2024.100204","DOIUrl":null,"url":null,"abstract":"<div><p>Birds, a fascinating and diverse group occupying various habitats worldwide, exhibit a wide range of life-history traits, reproductive methods, and migratory behaviors, all of which influence their immune systems. The association between major histocompatibility complex (MHC) genes and certain ecological factors in response to pathogen selection has been extensively studied; however, the role of the co-working molecule T cell receptor (TCR) remains poorly understood. This study aimed to analyze the copy numbers of TCR-V genes, the selection pressure (<em>ω</em> value) on MHC genes using available genomic data, and their potential ecological correlates across 93 species from 13 orders. The study was conducted using the publicly available genome data of birds. Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure. The phylogenetic generalized least squares regression model revealed that TCR-V<em>αδ</em> copy number and MHC-I selection pressure were positively associated with body mass. Clutch size was correlated with MHC selection pressure, and Migration was correlated with TCR-V<em>β</em> copy number. Further analyses revealed that the TCR-V<em>β</em> copy number was positively correlated with MHC-IIB selection pressure, while the TCR-V<em>γ</em> copy number was negatively correlated with MHC-I peptide-binding region selection pressure. Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’ life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2053716624000471/pdfft?md5=a076c6e39a88ea8b8796bfb71adeb9f8&pid=1-s2.0-S2053716624000471-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2053716624000471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Birds, a fascinating and diverse group occupying various habitats worldwide, exhibit a wide range of life-history traits, reproductive methods, and migratory behaviors, all of which influence their immune systems. The association between major histocompatibility complex (MHC) genes and certain ecological factors in response to pathogen selection has been extensively studied; however, the role of the co-working molecule T cell receptor (TCR) remains poorly understood. This study aimed to analyze the copy numbers of TCR-V genes, the selection pressure (ω value) on MHC genes using available genomic data, and their potential ecological correlates across 93 species from 13 orders. The study was conducted using the publicly available genome data of birds. Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure. The phylogenetic generalized least squares regression model revealed that TCR-Vαδ copy number and MHC-I selection pressure were positively associated with body mass. Clutch size was correlated with MHC selection pressure, and Migration was correlated with TCR-Vβ copy number. Further analyses revealed that the TCR-Vβ copy number was positively correlated with MHC-IIB selection pressure, while the TCR-Vγ copy number was negatively correlated with MHC-I peptide-binding region selection pressure. Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’ life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.