Identification of efficient amine transaminase and applicability in dual transaminases cascade for synthesis of L-phosphinothricin

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Enzyme and Microbial Technology Pub Date : 2024-08-22 DOI:10.1016/j.enzmictec.2024.110501
Puhong Yi , Mengdan Liu , Yuhua Hao , Ziwen Wang , Hanlin Liu , Xue Cai , Feng Cheng , Zhiqiang Liu , Yaping Xue , Liqun Jin , Yuguo Zheng
{"title":"Identification of efficient amine transaminase and applicability in dual transaminases cascade for synthesis of L-phosphinothricin","authors":"Puhong Yi ,&nbsp;Mengdan Liu ,&nbsp;Yuhua Hao ,&nbsp;Ziwen Wang ,&nbsp;Hanlin Liu ,&nbsp;Xue Cai ,&nbsp;Feng Cheng ,&nbsp;Zhiqiang Liu ,&nbsp;Yaping Xue ,&nbsp;Liqun Jin ,&nbsp;Yuguo Zheng","doi":"10.1016/j.enzmictec.2024.110501","DOIUrl":null,"url":null,"abstract":"<div><p>L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from <em>Bradyrhizobium diazoefficiens</em> ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal <em>in situ</em>, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110501"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102292400108X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from Bradyrhizobium diazoefficiens ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal in situ, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定高效胺转氨酶并将其应用于合成 L-膦丝菌素的双转氨酶级联中
左旋膦菊酯(L-PPT)是最常用的广谱高效除草剂。转氨酶(TAs)在 L-PPT 的不对称合成中起着关键作用,但却面临着不利反应平衡的挑战。本研究引入了新型双转氨酶级联系统(DTCS)来促进 L-PPT 的合成。筛选并鉴定了来源于 Bradyrhizobium diazoefficiens ZJY088 的特异性胺转氨酶 BdATA。它表现出极高的活性和良好的稳定性,只需要 2.5 等量的异丙基胺就能有效转化丙酮酸。通过将 BdATA 与之前报道的 SeTA 联用,构建了用于原位去除丙酮酸的 DTCS,L-PPT 产率从 37.37% 上升到 85.35%。DTCS 有三个优点:丙酮酸的去除减轻了副产物抑制;异丙胺的使用减少了对过量 L-丙氨酸的依赖;不需要 NAD(P)H 等昂贵的辅助因子。它为解决转氨酶介导的 L-PPT 合成所面临的挑战提供了一种创新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
百灵威
PLP
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
期刊最新文献
Unraveling the role of E. coli and calf intestinal alkaline phosphatase in calcium phosphate synthesis. Isolation of an endophytic yeast for improving the antibacterial activity of water chestnut Jiaosu: Focus on variation of microbial communities. Cell-free biocatalysis for co-production of nicotinamide mononucleotide and ethanol from Saccharomyces cerevisiae and recombinant Escherichia coli. Effect of the support alkyl chain nature in the functional properties of the immobilized lipases. Biosynthesis of 2-phenylethanol from styrene using engineered Escherichia coli whole cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1