{"title":"Impacts of vertical variations in soil properties on H*(10) simulations for 137Cs deposition","authors":"Xibo Ma, Hikaru Kobayashi","doi":"10.1016/j.jenvrad.2024.107524","DOIUrl":null,"url":null,"abstract":"<div><p>Photon transport simulations based on the Monte Carlo method have played a crucial role in assessing and estimating the ambient dose equivalent rates H*(10), resulting from the deposition of <sup>137</sup>Cs in soil following the nuclear power plant accident in Fukushima. However, a comprehensive examination of the effect of vertical variations in soil properties on the simulation outcomes has not yet been performed. Disregarding the vertical distribution of soil properties not only leads to potential inaccuracies in the shielding responses of soil layers but also in the determination of the radioactive source inventory, particularly when using the concentration data in Bq/kg. These oversights diminish the reliability of the simulation results. This study addresses several soil property factors that could potentially influence the simulation results, including variations in chemical composition induced by water content, bulk density profile, and estimated inventory profile, all evaluated through an examined simulation model. The results show that inappropriate assignment of the soil density profile can cause considerable errors in the H*(10) simulation outcomes. Furthermore, the sensitivity of H*(10) to variations in soil vertical density is analyzed, with the results indicating that H*(10) can be highly sensitive to changes in the bulk density of the top 0–5 cm soil layers. These results should facilitate the establishment of appropriate simulation strategies and support the reassessment of past simulation results.</p></div>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"279 ","pages":"Article 107524"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0265931X24001565/pdfft?md5=9f3b56261785e7e0766f3302774d7484&pid=1-s2.0-S0265931X24001565-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0265931X24001565","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photon transport simulations based on the Monte Carlo method have played a crucial role in assessing and estimating the ambient dose equivalent rates H*(10), resulting from the deposition of 137Cs in soil following the nuclear power plant accident in Fukushima. However, a comprehensive examination of the effect of vertical variations in soil properties on the simulation outcomes has not yet been performed. Disregarding the vertical distribution of soil properties not only leads to potential inaccuracies in the shielding responses of soil layers but also in the determination of the radioactive source inventory, particularly when using the concentration data in Bq/kg. These oversights diminish the reliability of the simulation results. This study addresses several soil property factors that could potentially influence the simulation results, including variations in chemical composition induced by water content, bulk density profile, and estimated inventory profile, all evaluated through an examined simulation model. The results show that inappropriate assignment of the soil density profile can cause considerable errors in the H*(10) simulation outcomes. Furthermore, the sensitivity of H*(10) to variations in soil vertical density is analyzed, with the results indicating that H*(10) can be highly sensitive to changes in the bulk density of the top 0–5 cm soil layers. These results should facilitate the establishment of appropriate simulation strategies and support the reassessment of past simulation results.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.