Resilience-based explainable reinforcement learning in chemical process safety

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-08-24 DOI:10.1016/j.compchemeng.2024.108849
Kinga Szatmári , Gergely Horváth , Sándor Németh , Wenshuai Bai , Alex Kummer
{"title":"Resilience-based explainable reinforcement learning in chemical process safety","authors":"Kinga Szatmári ,&nbsp;Gergely Horváth ,&nbsp;Sándor Németh ,&nbsp;Wenshuai Bai ,&nbsp;Alex Kummer","doi":"10.1016/j.compchemeng.2024.108849","DOIUrl":null,"url":null,"abstract":"<div><p>For future applications of artificial intelligence, namely reinforcement learning (RL), we develop a resilience-based explainable RL agent to make decisions about the activation of mitigation systems. The applied reinforcement learning algorithm is Deep Q-learning and the reward function is resilience. We investigate two explainable reinforcement learning methods, which are the decision tree, as a policy-explaining method, and the Shapley value as a state-explaining method.</p><p>The policy can be visualized in the agent’s state space using a decision tree for better understanding. We compare the agent’s decision boundary with the runaway boundaries defined by runaway criteria, namely the divergence criterion and modified dynamic condition. Shapley value explains the contribution of the state variables on the behavior of the agent over time. The results show that the decisions of the artificial agent in a resilience-based mitigation system can be explained and can be presented in a transparent way.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"191 ","pages":"Article 108849"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002679","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

For future applications of artificial intelligence, namely reinforcement learning (RL), we develop a resilience-based explainable RL agent to make decisions about the activation of mitigation systems. The applied reinforcement learning algorithm is Deep Q-learning and the reward function is resilience. We investigate two explainable reinforcement learning methods, which are the decision tree, as a policy-explaining method, and the Shapley value as a state-explaining method.

The policy can be visualized in the agent’s state space using a decision tree for better understanding. We compare the agent’s decision boundary with the runaway boundaries defined by runaway criteria, namely the divergence criterion and modified dynamic condition. Shapley value explains the contribution of the state variables on the behavior of the agent over time. The results show that the decisions of the artificial agent in a resilience-based mitigation system can be explained and can be presented in a transparent way.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学过程安全中基于复原力的可解释强化学习
针对人工智能的未来应用,即强化学习(RL),我们开发了一种基于复原力的可解释 RL 代理,用于就激活缓解系统做出决策。应用的强化学习算法是深度 Q-learning,奖励函数是复原力。我们研究了两种可解释的强化学习方法,一种是作为政策解释方法的决策树,另一种是作为状态解释方法的夏普利值。我们将代理的决策边界与失控标准(即发散标准和修正动态条件)定义的失控边界进行比较。Shapley 值解释了状态变量对代理行为随时间变化的贡献。结果表明,基于复原力的减灾系统中人工代理的决策是可以解释的,并且可以以透明的方式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1