{"title":"Magneto-photo-thermoelastic influences on a semiconductor hollow cylinder via a series-one-relaxation model","authors":"A.M. Zenkour , H.D. El-Shahrany , H.F. El-Mekawy","doi":"10.1016/j.cnsns.2024.108295","DOIUrl":null,"url":null,"abstract":"<div><p>This article discusses the deformation of semiconductor cylinders in the context of photothermoelastic theory. The proposed model is used to describe thermal waves, plasma waves, and elastic waves and analyze the theoretical analysis of thermal deformation effects on semiconductor hollow cylinders. The interior of the hollow cylinder is clamped and unaffected by thermal loads and carrier concentrations, while the exterior is subject to sinusoidal heating and limited carrier density. In addition, the surface of the cylinder is surrounded by magnets in the direction of its axis. Initially, the governing equations are explained in Laplace domain and the Laplace inversion is used numerically. The results from thermal physics are presented graphically to investigate the impact of thermal relaxation and temperature on temperature of plasma thermoelastic waves. The effects of carrier diffusion coefficient and surface recombination rate on carrier concentration distribution are also discussed in detail.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004805","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article discusses the deformation of semiconductor cylinders in the context of photothermoelastic theory. The proposed model is used to describe thermal waves, plasma waves, and elastic waves and analyze the theoretical analysis of thermal deformation effects on semiconductor hollow cylinders. The interior of the hollow cylinder is clamped and unaffected by thermal loads and carrier concentrations, while the exterior is subject to sinusoidal heating and limited carrier density. In addition, the surface of the cylinder is surrounded by magnets in the direction of its axis. Initially, the governing equations are explained in Laplace domain and the Laplace inversion is used numerically. The results from thermal physics are presented graphically to investigate the impact of thermal relaxation and temperature on temperature of plasma thermoelastic waves. The effects of carrier diffusion coefficient and surface recombination rate on carrier concentration distribution are also discussed in detail.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.