PixSim: Enhancing high-resolution large-scale forest simulations

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-08-22 DOI:10.1016/j.simpa.2024.100695
Nicolas Cattaneo, Rasmus Astrup, Clara Antón-Fernández
{"title":"PixSim: Enhancing high-resolution large-scale forest simulations","authors":"Nicolas Cattaneo,&nbsp;Rasmus Astrup,&nbsp;Clara Antón-Fernández","doi":"10.1016/j.simpa.2024.100695","DOIUrl":null,"url":null,"abstract":"<div><p>PixSim is a flexible, open-source forest growth simulator designed to operate at the pixel level of high-resolution, wall-to-wall forest resource maps generated through remote sensing approaches. PixSim addresses the need to adapt forest growth simulators to the data produced by modern remote sensing-based forest inventories, rather than relying on stand-level averages from traditional field-based inventories. By operating at the pixel level, PixSim captures intra-stand variability in high-resolution forest resource maps, which is often overlooked by stand-level simulators. This capability aligns with the current focus on precision forestry, aimed at improving management decisions with localized data and small-scale management. Implemented in the R programming language, PixSim features minimal package dependencies, provides flexibility and scalability, and has been optimized for high-resolution, large-scale simulations, ensuring efficient computation. The simulator’s flexibility and open-source nature support the incorporation of management modules and the inclusion of climate change scenarios in simulations.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100695"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000836/pdfft?md5=607affcb7b08c73e36361ba980a6ef08&pid=1-s2.0-S2665963824000836-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

PixSim is a flexible, open-source forest growth simulator designed to operate at the pixel level of high-resolution, wall-to-wall forest resource maps generated through remote sensing approaches. PixSim addresses the need to adapt forest growth simulators to the data produced by modern remote sensing-based forest inventories, rather than relying on stand-level averages from traditional field-based inventories. By operating at the pixel level, PixSim captures intra-stand variability in high-resolution forest resource maps, which is often overlooked by stand-level simulators. This capability aligns with the current focus on precision forestry, aimed at improving management decisions with localized data and small-scale management. Implemented in the R programming language, PixSim features minimal package dependencies, provides flexibility and scalability, and has been optimized for high-resolution, large-scale simulations, ensuring efficient computation. The simulator’s flexibility and open-source nature support the incorporation of management modules and the inclusion of climate change scenarios in simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PixSim:增强高分辨率大尺度森林模拟
PixSim 是一种灵活的开源森林生长模拟器,设计用于在通过遥感方法生成的高分辨率、满墙森林资源地图的像素级上运行。PixSim 解决了森林生长模拟器与基于遥感的现代森林资源调查所产生的数据相适应的问题,而不是依赖于传统的基于实地调查的林分平均值。通过像素级操作,PixSim 可捕捉高分辨率森林资源地图中的林分内部变化,而林分级模拟器往往会忽略这一点。这一功能与当前对精准林业的关注相吻合,旨在通过本地化数据和小规模管理改进管理决策。PixSim 使用 R 编程语言实现,具有最小的软件包依赖性、灵活性和可扩展性,并针对高分辨率、大规模模拟进行了优化,以确保高效计算。该模拟器的灵活性和开源性支持在模拟中加入管理模块和气候变化情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1