{"title":"The principle of optimality in dynamic programming: A pedagogical note","authors":"Bar Light","doi":"10.1016/j.orl.2024.107164","DOIUrl":null,"url":null,"abstract":"<div><p>The principle of optimality is a fundamental aspect of dynamic programming, which states that the optimal solution to a dynamic optimization problem can be found by combining the optimal solutions to its sub-problems. While this principle is generally applicable, it is often only taught for problems with finite or countable state spaces in order to sidestep measure-theoretic complexities. Therefore, it cannot be applied to classic models such as inventory management and dynamic pricing models that have continuous state spaces, and students may not be aware of the possible challenges involved in studying dynamic programming models with general state spaces. To address this, we provide conditions and a self-contained simple proof that establish when the principle of optimality for discounted dynamic programming is valid. These conditions shed light on the difficulties that may arise in the general state space case. We provide examples from the literature that include the relatively involved case of universally measurable dynamic programming and the simple case of finite dynamic programming where our main result can be applied to show that the principle of optimality holds.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107164"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724001007","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The principle of optimality is a fundamental aspect of dynamic programming, which states that the optimal solution to a dynamic optimization problem can be found by combining the optimal solutions to its sub-problems. While this principle is generally applicable, it is often only taught for problems with finite or countable state spaces in order to sidestep measure-theoretic complexities. Therefore, it cannot be applied to classic models such as inventory management and dynamic pricing models that have continuous state spaces, and students may not be aware of the possible challenges involved in studying dynamic programming models with general state spaces. To address this, we provide conditions and a self-contained simple proof that establish when the principle of optimality for discounted dynamic programming is valid. These conditions shed light on the difficulties that may arise in the general state space case. We provide examples from the literature that include the relatively involved case of universally measurable dynamic programming and the simple case of finite dynamic programming where our main result can be applied to show that the principle of optimality holds.
期刊介绍:
Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.