{"title":"Identification and characterization of phytochemicals in methanolic extract of roots of Datura fastuosa using various techniques","authors":"Girma Mengesha Melese, Tewodros Brihanu Aychiluhim, Abdurrahman Mengesha Yessuf, Matthewos Eshete","doi":"10.1186/s43094-024-00682-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Plant extracts have attracted significant interest among researchers due to their potential bioactivity and crucial contribution to the production of pharmaceutical compounds. In this study, the primary objective was to extract, analyze and characterize the bioactive compounds found in the methanol root extract of <i>Datura fastuosa</i> (<i>D. fastuosa</i>). This was achieved using various analytical techniques such as gas chromatography/mass spectrometry (GC–MS), ultra-violet visible spectrophotometry, Fourier-transform infrared (FT-IR), nuclear magnetic radiation spectrometry (NMR) and DPPH free radical scavenging activity assay.</p><h3>Results</h3><p>GC–MS analysis of the methanol root crude extract identified 49 compounds. Three compounds were isolated via column chromatography; one was pure, with a sharp melting point and clean IR spectrum, while the other two showed broad melting points and IR interferences. Comprehensive investigation of the pure extract revealed a UV profile with two distinct bands (300–800 nm) and confirmed functional groups (alcohol, alkanes, alkenes, carbonyl, methylene, and methyl) through FT-IR analysis. The <sup>1</sup>HNMR (proton nuclear magnetic resonance spectroscopy) signal confirmed the presence of forty-nine non-equivalent protons, <sup>13</sup>CNMR (Carbon-13 nuclear magnetic resonance spectroscopy) signal confirmed the presence of 32 non-equivalent carbons and DEPT-135 (distortionless enhancement by polarization transfer-135) signal confirmed the presence of 24 carbons (17 for odd and 7 for even) which are protons containing carbons in the compound. Combining the above mentioned analyses with data obtained from the GC/MS analysis of National Institute of Standards and Technology (NIST) library, the isolated pure compound exhibited a structural similarity to 1-(7-(3-hydroxyphenyl)-1,1,4a,5,6,9,10a,10b-octamethyl-1,2,3,4,4a,4b,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydrochrysen-2-yl)propan-1-one, with a chemical formula of C<sub>35</sub>H<sub>50</sub>O<sub>2</sub>.</p><h3>Conclusions</h3><p>The presence of various notable compounds, including phenolics, flavonoids, alkaloids, steroids etc., within the methanol root extract of <i>D. fastuosa</i> signifies its pharmacological potential. The methanol crude extract demonstrated antioxidant potential compared to standard ascorbic acid, exhibiting DPPH scavenging activity. Previous research has demonstrated the bioactivity of some of these compounds, further elucidating the plant’s medicinal properties. These findings not only suggest opportunities for developing synthetic drugs but also underscore its direct therapeutic potential in addressing diverse ailments.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00682-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00682-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Plant extracts have attracted significant interest among researchers due to their potential bioactivity and crucial contribution to the production of pharmaceutical compounds. In this study, the primary objective was to extract, analyze and characterize the bioactive compounds found in the methanol root extract of Datura fastuosa (D. fastuosa). This was achieved using various analytical techniques such as gas chromatography/mass spectrometry (GC–MS), ultra-violet visible spectrophotometry, Fourier-transform infrared (FT-IR), nuclear magnetic radiation spectrometry (NMR) and DPPH free radical scavenging activity assay.
Results
GC–MS analysis of the methanol root crude extract identified 49 compounds. Three compounds were isolated via column chromatography; one was pure, with a sharp melting point and clean IR spectrum, while the other two showed broad melting points and IR interferences. Comprehensive investigation of the pure extract revealed a UV profile with two distinct bands (300–800 nm) and confirmed functional groups (alcohol, alkanes, alkenes, carbonyl, methylene, and methyl) through FT-IR analysis. The 1HNMR (proton nuclear magnetic resonance spectroscopy) signal confirmed the presence of forty-nine non-equivalent protons, 13CNMR (Carbon-13 nuclear magnetic resonance spectroscopy) signal confirmed the presence of 32 non-equivalent carbons and DEPT-135 (distortionless enhancement by polarization transfer-135) signal confirmed the presence of 24 carbons (17 for odd and 7 for even) which are protons containing carbons in the compound. Combining the above mentioned analyses with data obtained from the GC/MS analysis of National Institute of Standards and Technology (NIST) library, the isolated pure compound exhibited a structural similarity to 1-(7-(3-hydroxyphenyl)-1,1,4a,5,6,9,10a,10b-octamethyl-1,2,3,4,4a,4b,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydrochrysen-2-yl)propan-1-one, with a chemical formula of C35H50O2.
Conclusions
The presence of various notable compounds, including phenolics, flavonoids, alkaloids, steroids etc., within the methanol root extract of D. fastuosa signifies its pharmacological potential. The methanol crude extract demonstrated antioxidant potential compared to standard ascorbic acid, exhibiting DPPH scavenging activity. Previous research has demonstrated the bioactivity of some of these compounds, further elucidating the plant’s medicinal properties. These findings not only suggest opportunities for developing synthetic drugs but also underscore its direct therapeutic potential in addressing diverse ailments.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.