Nicholas Connolly, Vivien Londe, Anthony Leverrier, Nicolas Delfosse
{"title":"Fast erasure decoder for hypergraph product codes","authors":"Nicholas Connolly, Vivien Londe, Anthony Leverrier, Nicolas Delfosse","doi":"10.22331/q-2024-08-27-1450","DOIUrl":null,"url":null,"abstract":"We propose a decoder for the correction of erasures with hypergraph product codes, which form one of the most popular families of quantum LDPC codes. Our numerical simulations show that this decoder provides a close approximation of the maximum likelihood decoder that can be implemented in $O(N^2)$ bit operations where $N$ is the length of the quantum code. A probabilistic version of this decoder can be implemented in $O(N^{1.5})$ bit operations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"6 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-27-1450","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a decoder for the correction of erasures with hypergraph product codes, which form one of the most popular families of quantum LDPC codes. Our numerical simulations show that this decoder provides a close approximation of the maximum likelihood decoder that can be implemented in $O(N^2)$ bit operations where $N$ is the length of the quantum code. A probabilistic version of this decoder can be implemented in $O(N^{1.5})$ bit operations.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.