Jianxin Tang, Shihui Song, Qian Du, Yabing Yao, Jitao Qu
{"title":"Graph convolutional networks with the self-attention mechanism for adaptive influence maximization in social networks","authors":"Jianxin Tang, Shihui Song, Qian Du, Yabing Yao, Jitao Qu","doi":"10.1007/s40747-024-01604-y","DOIUrl":null,"url":null,"abstract":"<p>The influence maximization problem that has drawn a great deal of attention from researchers aims to identify a subset of influential spreaders that can maximize the expected influence spread in social networks. Existing works on the problem primarily concentrate on developing non-adaptive policies, where all seeds will be ignited at the very beginning of the diffusion after the identification. However, in non-adaptive policies, budget redundancy could occur as a result of some seeds being naturally infected by other active seeds during the diffusion process. In this paper, the adaptive seeding policies are investigated for the intractable adaptive influence maximization problem. Based on deep learning model, a novel approach named graph convolutional networks with self-attention mechanism (ATGCN) is proposed to address the adaptive influence maximization as a regression task. A controlling parameter is introduced for the adaptive seeding model to make a tradeoff between the spreading delay and influence coverage. The proposed approach leverages the self-attention mechanism to dynamically assign importance weight to node representations efficiently to capture the node influence feature information relevant to the adaptive influence maximization problem. Finally, intensive experimental findings on six real-world social networks demonstrate the superiorities of the adaptive seeding policy over the state-of-the-art baseline methods to the conventional influence maximization problem. Meanwhile, the proposed adaptive seeding policy ATGCN improves the influence spread rate by up to 7% in comparison to the existing state-of-the-art greedy-based adaptive seeding policy.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01604-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The influence maximization problem that has drawn a great deal of attention from researchers aims to identify a subset of influential spreaders that can maximize the expected influence spread in social networks. Existing works on the problem primarily concentrate on developing non-adaptive policies, where all seeds will be ignited at the very beginning of the diffusion after the identification. However, in non-adaptive policies, budget redundancy could occur as a result of some seeds being naturally infected by other active seeds during the diffusion process. In this paper, the adaptive seeding policies are investigated for the intractable adaptive influence maximization problem. Based on deep learning model, a novel approach named graph convolutional networks with self-attention mechanism (ATGCN) is proposed to address the adaptive influence maximization as a regression task. A controlling parameter is introduced for the adaptive seeding model to make a tradeoff between the spreading delay and influence coverage. The proposed approach leverages the self-attention mechanism to dynamically assign importance weight to node representations efficiently to capture the node influence feature information relevant to the adaptive influence maximization problem. Finally, intensive experimental findings on six real-world social networks demonstrate the superiorities of the adaptive seeding policy over the state-of-the-art baseline methods to the conventional influence maximization problem. Meanwhile, the proposed adaptive seeding policy ATGCN improves the influence spread rate by up to 7% in comparison to the existing state-of-the-art greedy-based adaptive seeding policy.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.