Autonomous Navigation of Quadrotors in Dynamic Complex Environments

IF 7.2 1区 工程技术 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Industrial Electronics Pub Date : 2024-08-27 DOI:10.1109/TIE.2024.3433585
Ruocheng Li;Bin Xin
{"title":"Autonomous Navigation of Quadrotors in Dynamic Complex Environments","authors":"Ruocheng Li;Bin Xin","doi":"10.1109/TIE.2024.3433585","DOIUrl":null,"url":null,"abstract":"This article introduces a novel framework utilizing velocity obstacles to enhance the autonomous navigation of quadrotors in dynamic complex environments. In this framework, quadrotors rely on onboard sensors to perceive the surrounding environment and construct an occupancy grid map for environmental representation. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is employed to extract the positions and velocities of dynamic obstacles within the environment. Based on these results, we propose a velocity obstacle-based gradient field, called gradient velocity obstacle (GVO), for generating collision-free velocities ensuring safety. Compared with existing methods, GVO preserves the original feasible set while ensuring computational efficiency. Moreover, it exhibits excellent fault tolerance to environmental perception noise. Additionally, we design motion primitives based on B-spline parameterization. By optimizing within position and velocity state spaces, collision-free trajectories are dynamically constructed in real-time. Extensive simulations and experiments validate our framework's effectiveness, showcasing significant improvements in navigation efficiency and safety. The experimental section of the entire work can be found at the following link: <uri>https://www.youtube.com/watch?v=TOEeoFO4OxY</uri>.","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"72 3","pages":"2790-2800"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10649014/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel framework utilizing velocity obstacles to enhance the autonomous navigation of quadrotors in dynamic complex environments. In this framework, quadrotors rely on onboard sensors to perceive the surrounding environment and construct an occupancy grid map for environmental representation. The density-based spatial clustering of applications with noise (DBSCAN) algorithm is employed to extract the positions and velocities of dynamic obstacles within the environment. Based on these results, we propose a velocity obstacle-based gradient field, called gradient velocity obstacle (GVO), for generating collision-free velocities ensuring safety. Compared with existing methods, GVO preserves the original feasible set while ensuring computational efficiency. Moreover, it exhibits excellent fault tolerance to environmental perception noise. Additionally, we design motion primitives based on B-spline parameterization. By optimizing within position and velocity state spaces, collision-free trajectories are dynamically constructed in real-time. Extensive simulations and experiments validate our framework's effectiveness, showcasing significant improvements in navigation efficiency and safety. The experimental section of the entire work can be found at the following link: https://www.youtube.com/watch?v=TOEeoFO4OxY.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四旋翼飞行器在动态复杂环境中的自主导航
本文介绍了一种利用速度障碍增强四旋翼机在动态复杂环境下自主导航的新框架。在这个框架中,四旋翼机依靠机载传感器来感知周围环境,并构建占用网格图来表示环境。采用基于密度的带噪声应用空间聚类(DBSCAN)算法提取环境中动态障碍物的位置和速度。基于这些结果,我们提出了一种基于速度障碍的梯度场,称为梯度速度障碍(GVO),用于产生确保安全的无碰撞速度。与现有方法相比,GVO在保证计算效率的同时保留了原有可行集。此外,它对环境感知噪声具有良好的容错性。此外,我们设计了基于b样条参数化的运动原语。通过在位置和速度状态空间内的优化,实时动态构建无碰撞轨迹。大量的仿真和实验验证了我们的框架的有效性,展示了导航效率和安全性的显着改进。整个作品的实验部分可以在以下链接中找到:https://www.youtube.com/watch?v=TOEeoFO4OxY。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Industrial Electronics
IEEE Transactions on Industrial Electronics 工程技术-工程:电子与电气
CiteScore
16.80
自引率
9.10%
发文量
1396
审稿时长
6.3 months
期刊介绍: Journal Name: IEEE Transactions on Industrial Electronics Publication Frequency: Monthly Scope: The scope of IEEE Transactions on Industrial Electronics encompasses the following areas: Applications of electronics, controls, and communications in industrial and manufacturing systems and processes. Power electronics and drive control techniques. System control and signal processing. Fault detection and diagnosis. Power systems. Instrumentation, measurement, and testing. Modeling and simulation. Motion control. Robotics. Sensors and actuators. Implementation of neural networks, fuzzy logic, and artificial intelligence in industrial systems. Factory automation. Communication and computer networks.
期刊最新文献
Shattering Latency Boundaries: An LSTM–RCM Driven Smith Predictor for Path Tracking Control Under Time Delay Impact of Torsional Vibration of Brushless Excitation Turbogenerator Shafting on the Parameters of Coaxial Exciter A Novel L 1 -and- L 2 -Norm-Integrated Parameter Identification Model for Robot Calibration A High-Voltage-Gain Three-Port DC–DC Converter With Reduced Semiconductor Stress and Low Input Current Ripple Enhanced Virtual-Oscillator Controlled Inverter: A Complex-Coefficient Filter Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1