Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-08-28 DOI:10.1109/TCBB.2024.3451051
Huiwei Zhou;Wenchu Li;Weihong Yao;Yingyu Lin;Lei Du
{"title":"Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation","authors":"Huiwei Zhou;Wenchu Li;Weihong Yao;Yingyu Lin;Lei Du","doi":"10.1109/TCBB.2024.3451051","DOIUrl":null,"url":null,"abstract":"Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2102-2112"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654589/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物医学假设生成的多源时态知识图谱对比。
假设生成(HG)旨在通过从现有科学文献中生成新的假设来加快生物医学研究。现有的大多数研究侧重于对语料库的静态快照进行建模,而忽视了科学术语的时间演变。尽管近年来人们努力从知识库(KBs)中学习术语演变,但来自多源知识库的时间信息仍被忽视,而这些信息包含重要的最新知识。本文引入了一个创新的时态对比学习(TCL)框架,通过对实体在多源时态知识库中的共同演变进行联合建模,发现实体之间的潜在关联。具体来说,我们首先基于 PubMed 论文和生物医学关系数据库(如比较毒物基因组学数据库 (CTD))构建时态关系图。然后,利用构建的时态关系图和时态概念图(如医学主题词表(MeSH))分别训练两个基于 GCN 的递归网络,以学习实体的时态演化嵌入。最后,通过对比从两个时态知识图谱(TKG)中学习到的时态嵌入,设计了一个跨视图时态预测任务,用于学习知识丰富的时态嵌入。在三个真实世界生物医学术语关系数据集上进行的实验结果表明,所提出的方法明显优于基于单一 TKG 的方法,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
Guest Editorial Guest Editorial for the 20th Asia Pacific Bioinformatics Conference iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1