Nanoparticle delivery of innate immune agonists combined with senescence-inducing agents promotes T cell control of pancreatic cancer

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2024-08-28 DOI:10.1126/scitranslmed.adj9366
Loretah Chibaya, Kelly D. DeMarco, Christina F. Lusi, Griffin I. Kane, Meghan L. Brassil, Chaitanya N. Parikh, Katherine C. Murphy, Shreya R. Chowdhury, Junhui Li, Boyang Ma, Tiana E. Naylor, Julia Cerrutti, Haruka Mori, Miranda Diaz-Infante, Jessica Peura, Jason R. Pitarresi, Lihua Julie Zhu, Katherine A. Fitzgerald, Prabhani U. Atukorale, Marcus Ruscetti
{"title":"Nanoparticle delivery of innate immune agonists combined with senescence-inducing agents promotes T cell control of pancreatic cancer","authors":"Loretah Chibaya,&nbsp;Kelly D. DeMarco,&nbsp;Christina F. Lusi,&nbsp;Griffin I. Kane,&nbsp;Meghan L. Brassil,&nbsp;Chaitanya N. Parikh,&nbsp;Katherine C. Murphy,&nbsp;Shreya R. Chowdhury,&nbsp;Junhui Li,&nbsp;Boyang Ma,&nbsp;Tiana E. Naylor,&nbsp;Julia Cerrutti,&nbsp;Haruka Mori,&nbsp;Miranda Diaz-Infante,&nbsp;Jessica Peura,&nbsp;Jason R. Pitarresi,&nbsp;Lihua Julie Zhu,&nbsp;Katherine A. Fitzgerald,&nbsp;Prabhani U. Atukorale,&nbsp;Marcus Ruscetti","doi":"10.1126/scitranslmed.adj9366","DOIUrl":null,"url":null,"abstract":"<div >Pancreatic ductal adenocarcinoma (PDAC) has quickly risen to become the third leading cause of cancer-related death in the United States. This is in part because of its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here, we investigated an immunotherapy approach combining delivery of stimulator of interferon genes (STING) and Toll-like receptor 4 (TLR4) innate immune agonists by lipid-based nanoparticle (NP) coencapsulation with senescence-inducing RAS-targeted therapies, which can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other proinflammatory signaling pathways, increased antigen presentation by tumor cells and antigen-presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell–driven and type I interferon–mediated tumor regression and long-term survival in preclinical PDAC models dependent on both tumor and host STING activation. STING and TLR4-mediated type I interferon signaling was also associated with enhanced natural killer and CD8<sup>+</sup> T cell immunity in human PDAC samples. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can orchestrate a coordinated type I interferon–driven innate and adaptive immune response with durable antitumor efficacy against PDAC.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adj9366","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adj9366","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has quickly risen to become the third leading cause of cancer-related death in the United States. This is in part because of its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here, we investigated an immunotherapy approach combining delivery of stimulator of interferon genes (STING) and Toll-like receptor 4 (TLR4) innate immune agonists by lipid-based nanoparticle (NP) coencapsulation with senescence-inducing RAS-targeted therapies, which can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other proinflammatory signaling pathways, increased antigen presentation by tumor cells and antigen-presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell–driven and type I interferon–mediated tumor regression and long-term survival in preclinical PDAC models dependent on both tumor and host STING activation. STING and TLR4-mediated type I interferon signaling was also associated with enhanced natural killer and CD8+ T cell immunity in human PDAC samples. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can orchestrate a coordinated type I interferon–driven innate and adaptive immune response with durable antitumor efficacy against PDAC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米颗粒递送先天性免疫激动剂与衰老诱导剂相结合,可促进 T 细胞对胰腺癌的控制。
胰腺导管腺癌(PDAC)已迅速跃升为美国癌症相关死亡的第三大原因。这部分是由于其纤维化的肿瘤微环境(TME)导致血管化和免疫浸润不良,进而导致化疗和免疫治疗失败。在这里,我们研究了一种免疫疗法,它通过脂基纳米粒子(NP)包被将干扰素基因刺激因子(STING)和Toll样受体4(TLR4)先天性免疫激动剂与衰老诱导RAS靶向疗法相结合,从而通过衰老相关分泌表型重塑免疫抑制性PDAC TME。用这些疗法治疗移植和自体PDAC小鼠模型会增强PDAC TME中多种类型细胞对NPs的吸收,诱导I型干扰素和其他促炎症信号通路,增加肿瘤细胞和抗原递呈细胞的抗原递呈,继而激活先天性和适应性免疫反应。这种双管齐下的方法在临床前 PDAC 模型中产生了强效的 T 细胞驱动和 I 型干扰素介导的肿瘤消退和长期存活,这取决于肿瘤和宿主 STING 的激活。STING 和 TLR4 介导的 I 型干扰素信号也与人类 PDAC 样本中增强的自然杀伤细胞和 CD8+ T 细胞免疫有关。因此,将局部免疫激动剂给药与全身性肿瘤靶向治疗相结合,可以协调I型干扰素驱动的先天性和适应性免疫反应,对PDAC具有持久的抗肿瘤疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19 Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice Monoclonal antibodies against the spike protein alter the endogenous humoral response to SARS-CoV-2 vaccination and infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1