Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes

James Matuk;Sebastian Kurtek;Karthik Bharath
{"title":"Topo-Geometric Analysis of Variability in Point Clouds Using Persistence Landscapes","authors":"James Matuk;Sebastian Kurtek;Karthik Bharath","doi":"10.1109/TPAMI.2024.3451328","DOIUrl":null,"url":null,"abstract":"Topological data analysis provides a set of tools to uncover low-dimensional structure in noisy point clouds. Prominent amongst the tools is persistence homology, which summarizes birth-death times of homological features using data objects known as persistence diagrams. To better aid statistical analysis, a functional representation of the diagrams, known as persistence landscapes, enable use of functional data analysis and machine learning tools. Topological and geometric variabilities inherent in point clouds are confounded in both persistence diagrams and landscapes, and it is important to distinguish topological signal from noise to draw reliable conclusions on the structure of the point clouds when using persistence homology. We develop a framework for decomposing variability in persistence diagrams into topological signal and topological noise through alignment of persistence landscapes using an elastic Riemannian metric. Aligned landscapes (amplitude) isolate the topological signal. Reparameterizations used for landscape alignment (phase) are linked to a resolution parameter used to generate persistence diagrams, and capture topological noise in the form of geometric, global scaling and sampling variabilities. We illustrate the importance of decoupling topological signal and topological noise in persistence diagrams (landscapes) using several simulated examples. We also demonstrate that our approach provides novel insights in two real data studies.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11035-11046"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10654312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Topological data analysis provides a set of tools to uncover low-dimensional structure in noisy point clouds. Prominent amongst the tools is persistence homology, which summarizes birth-death times of homological features using data objects known as persistence diagrams. To better aid statistical analysis, a functional representation of the diagrams, known as persistence landscapes, enable use of functional data analysis and machine learning tools. Topological and geometric variabilities inherent in point clouds are confounded in both persistence diagrams and landscapes, and it is important to distinguish topological signal from noise to draw reliable conclusions on the structure of the point clouds when using persistence homology. We develop a framework for decomposing variability in persistence diagrams into topological signal and topological noise through alignment of persistence landscapes using an elastic Riemannian metric. Aligned landscapes (amplitude) isolate the topological signal. Reparameterizations used for landscape alignment (phase) are linked to a resolution parameter used to generate persistence diagrams, and capture topological noise in the form of geometric, global scaling and sampling variabilities. We illustrate the importance of decoupling topological signal and topological noise in persistence diagrams (landscapes) using several simulated examples. We also demonstrate that our approach provides novel insights in two real data studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用持久性景观对点云中的可变性进行拓扑-几何分析。
拓扑数据分析提供了一套工具,用于揭示噪声点云中的低维结构。其中最重要的工具是持久同源性,它利用被称为持久图的数据对象总结同源性特征的出生-死亡时间。为了更好地帮助统计分析,持久图的功能表示法(称为持久景观)可用于功能数据分析和机器学习工具。点云固有的拓扑和几何变异在持久图和地貌图中都会被混淆,因此在使用持久同源性时,必须将拓扑信号与噪声区分开来,才能就点云的结构得出可靠的结论。我们开发了一个框架,通过使用弹性黎曼度量对持久性地貌进行配准,将持久性图中的可变性分解为拓扑信号和拓扑噪声。对齐的景观(振幅)可隔离拓扑信号。用于景观配准(相位)的重参数化与用于生成持久图的分辨率参数相关联,并以几何、全局缩放和采样变异的形式捕捉拓扑噪声。我们通过几个模拟示例说明了持久图(景观)中拓扑信号和拓扑噪声解耦的重要性。我们还在两项真实数据研究中证明了我们的方法能提供新颖的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1