A WSN and vision based smart, energy efficient, scalable, and reliable parking surveillance system with optical verification at edge for resource constrained IoT devices
Shreeram Hudda, Rishabh Barnwal, Abhishek Khurana, K. Haribabu
{"title":"A WSN and vision based smart, energy efficient, scalable, and reliable parking surveillance system with optical verification at edge for resource constrained IoT devices","authors":"Shreeram Hudda, Rishabh Barnwal, Abhishek Khurana, K. Haribabu","doi":"10.1016/j.iot.2024.101346","DOIUrl":null,"url":null,"abstract":"<div><p>As urbanization accelerates, the demand for efficient parking surveillance solutions has increased. However, existing solutions often face challenges related to energy consumption, scalability, and reliability. This paper introduces a smart hybrid parking surveillance system integrating wireless sensor networks (WSNs) with vision based solution at the edge for resource constrained IoT devices to address these challenges. The solution leverages WSNs for periodic readings of parking space occupancy and introduces a low power sleep mode in the network for energy efficiency, along with optical verification strategies using computer vision models like R-CNN and Faster R-CNN FPN on ResNet50 and MobileNetv2 backbones for distinguishing between true and false positives in the WSN data for a greater accuracy in parking space occupancy. The system utilizes edge for computing on edge servers resulting in increased responsiveness of the system, reduced data transmission and real time processing of data. The proposed solution is formulated in such a way that it automatically switches between WSN and vision based sensing resulting in less energy consumption and longer lifespan of the system without compromising on accuracy. Through experimental results it is observed that models trained on the MobileNetv2 backbone demonstrated at least twice faster for both processing the images and training compared to those models trained on the ResNet backbone. On the other hand, both Faster R-CNN FPN (input resolution: 1440) and R-CNN (input resolution: 128) models trained on the MobileNetv2 backbone have slightly lower accuracies than the same models trained on the ResNet50 backbone.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101346"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002877","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As urbanization accelerates, the demand for efficient parking surveillance solutions has increased. However, existing solutions often face challenges related to energy consumption, scalability, and reliability. This paper introduces a smart hybrid parking surveillance system integrating wireless sensor networks (WSNs) with vision based solution at the edge for resource constrained IoT devices to address these challenges. The solution leverages WSNs for periodic readings of parking space occupancy and introduces a low power sleep mode in the network for energy efficiency, along with optical verification strategies using computer vision models like R-CNN and Faster R-CNN FPN on ResNet50 and MobileNetv2 backbones for distinguishing between true and false positives in the WSN data for a greater accuracy in parking space occupancy. The system utilizes edge for computing on edge servers resulting in increased responsiveness of the system, reduced data transmission and real time processing of data. The proposed solution is formulated in such a way that it automatically switches between WSN and vision based sensing resulting in less energy consumption and longer lifespan of the system without compromising on accuracy. Through experimental results it is observed that models trained on the MobileNetv2 backbone demonstrated at least twice faster for both processing the images and training compared to those models trained on the ResNet backbone. On the other hand, both Faster R-CNN FPN (input resolution: 1440) and R-CNN (input resolution: 128) models trained on the MobileNetv2 backbone have slightly lower accuracies than the same models trained on the ResNet50 backbone.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.