A framework for measuring the quality of business process simulation models

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Systems Pub Date : 2024-08-22 DOI:10.1016/j.is.2024.102447
{"title":"A framework for measuring the quality of business process simulation models","authors":"","doi":"10.1016/j.is.2024.102447","DOIUrl":null,"url":null,"abstract":"<div><p>Business Process Simulation (BPS) is an approach to analyze the performance of business processes under different scenarios. For example, BPS allows us to estimate the impact of adding one or more resources on the cycle time of a process. The starting point of BPS is a process model annotated with simulation parameters (a BPS model). BPS models may be manually designed, based on information collected from stakeholders and from empirical observations, or automatically discovered from historical execution data. Regardless of its provenance, a key question when using a BPS model is how to assess its quality. In particular, in a setting where we are able to produce multiple alternative BPS models of the same process, this question becomes: How to determine which model is better, to what extent, and in what respect? In this context, this article studies the question of how to measure the quality of a BPS model with respect to its ability to accurately replicate the observed behavior of a process. Rather than pursuing a one-size-fits-all approach, the article recognizes that a process covers multiple perspectives. Accordingly, the article outlines a framework that can be instantiated in different ways to yield quality measures that tackle different process perspectives. The article defines a number of concrete quality measures and evaluates these measures with respect to their ability to discern the impact of controlled perturbations on a BPS model, and their ability to uncover the relative strengths and weaknesses of two approaches for automated discovery of BPS models. The evaluation shows that the proposed measures not only capture how close a BPS model is to the observed behavior, but they also help us to identify the sources of discrepancies.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306437924001054/pdfft?md5=7958dc6fdab5faf4469760f9d839425a&pid=1-s2.0-S0306437924001054-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001054","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Business Process Simulation (BPS) is an approach to analyze the performance of business processes under different scenarios. For example, BPS allows us to estimate the impact of adding one or more resources on the cycle time of a process. The starting point of BPS is a process model annotated with simulation parameters (a BPS model). BPS models may be manually designed, based on information collected from stakeholders and from empirical observations, or automatically discovered from historical execution data. Regardless of its provenance, a key question when using a BPS model is how to assess its quality. In particular, in a setting where we are able to produce multiple alternative BPS models of the same process, this question becomes: How to determine which model is better, to what extent, and in what respect? In this context, this article studies the question of how to measure the quality of a BPS model with respect to its ability to accurately replicate the observed behavior of a process. Rather than pursuing a one-size-fits-all approach, the article recognizes that a process covers multiple perspectives. Accordingly, the article outlines a framework that can be instantiated in different ways to yield quality measures that tackle different process perspectives. The article defines a number of concrete quality measures and evaluates these measures with respect to their ability to discern the impact of controlled perturbations on a BPS model, and their ability to uncover the relative strengths and weaknesses of two approaches for automated discovery of BPS models. The evaluation shows that the proposed measures not only capture how close a BPS model is to the observed behavior, but they also help us to identify the sources of discrepancies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衡量业务流程模拟模型质量的框架
业务流程模拟(BPS)是一种分析不同情况下业务流程性能的方法。例如,BPS 可以让我们估算增加一个或多个资源对流程周期时间的影响。BPS 的起点是一个注有模拟参数的流程模型(BPS 模型)。BPS 模型可以根据从利益相关者和经验观察中收集的信息手动设计,也可以从历史执行数据中自动发现。无论其来源如何,使用 BPS 模型时的一个关键问题是如何评估其质量。特别是在我们能够为同一流程生成多个可供选择的 BPS 模型的情况下,这个问题就变得尤为重要:如何确定哪个模型更好,好到什么程度,以及在哪些方面更好?在这种情况下,本文研究的问题是:如何根据 BPS 模型准确复制观察到的过程行为的能力来衡量其质量。文章并不追求一刀切的方法,而是认识到流程涵盖多个角度。因此,文章概述了一个框架,该框架可以不同的方式进行实例化,以产生针对不同流程视角的质量度量。文章定义了一些具体的质量度量,并评估了这些度量在辨别受控扰动对 BPS 模型的影响方面的能力,以及在揭示自动发现 BPS 模型的两种方法的相对优缺点方面的能力。评估结果表明,所提出的测量方法不仅能捕捉 BPS 模型与观测行为的接近程度,还能帮助我们识别差异的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
期刊最新文献
Effective data exploration through clustering of local attributive explanations Data Lakehouse: A survey and experimental study Temporal graph processing in modern memory hierarchies Bridging reading and mapping: The role of reading annotations in facilitating feedback while concept mapping A universal approach for simplified redundancy-aware cross-model querying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1