Qiang Chen, Luis Aguirre, Guoming Liang, Huanhuan Zhao, Tao Dong, Felix Borrego, Itziar de Rojas, Qichan Hu, Christopher Reyes, Ling-Yan Su, Bao Zhang, James D. Lechleiter, Harald H. H. Göring, Philip L. De Jager, Joel E. Kleinman, Thomas M. Hyde, Pan P. Li, Agustín Ruiz, Daniel R. Weinberger, Sudha Seshadri, Liang Ma
{"title":"Identification of a specific APOE transcript and functional elements associated with Alzheimer’s disease","authors":"Qiang Chen, Luis Aguirre, Guoming Liang, Huanhuan Zhao, Tao Dong, Felix Borrego, Itziar de Rojas, Qichan Hu, Christopher Reyes, Ling-Yan Su, Bao Zhang, James D. Lechleiter, Harald H. H. Göring, Philip L. De Jager, Joel E. Kleinman, Thomas M. Hyde, Pan P. Li, Agustín Ruiz, Daniel R. Weinberger, Sudha Seshadri, Liang Ma","doi":"10.1186/s13024-024-00751-7","DOIUrl":null,"url":null,"abstract":"The APOE gene is the strongest genetic risk factor for late-onset Alzheimer’s Disease (LOAD). However, the gene regulatory mechanisms at this locus remain incompletely characterized. To identify novel AD-linked functional elements within the APOE locus, we integrated SNP variants with multi-omics data from human postmortem brains including 2,179 RNA-seq samples from 3 brain regions and two ancestries (European and African), 667 DNA methylation samples, and ChIP-seq samples. Additionally, we plotted the expression trajectory of APOE transcripts in human brains during development. We identified an AD-linked APOE transcript (jxn1.2.2) particularly observed in the dorsolateral prefrontal cortex (DLPFC). The APOE jxn1.2.2 transcript is associated with brain neuropathological features, cognitive impairment, and the presence of the APOE4 allele in DLPFC. We prioritized two independent functional SNPs (rs157580 and rs439401) significantly associated with jxn1.2.2 transcript abundance and DNA methylation levels. These SNPs are located within active chromatin regions and affect brain-related transcription factor-binding affinities. The two SNPs shared effects on the jxn1.2.2 transcript between European and African ethnic groups. The novel APOE functional elements provide potential therapeutic targets with mechanistic insight into the disease etiology.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":null,"pages":null},"PeriodicalIF":14.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-024-00751-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The APOE gene is the strongest genetic risk factor for late-onset Alzheimer’s Disease (LOAD). However, the gene regulatory mechanisms at this locus remain incompletely characterized. To identify novel AD-linked functional elements within the APOE locus, we integrated SNP variants with multi-omics data from human postmortem brains including 2,179 RNA-seq samples from 3 brain regions and two ancestries (European and African), 667 DNA methylation samples, and ChIP-seq samples. Additionally, we plotted the expression trajectory of APOE transcripts in human brains during development. We identified an AD-linked APOE transcript (jxn1.2.2) particularly observed in the dorsolateral prefrontal cortex (DLPFC). The APOE jxn1.2.2 transcript is associated with brain neuropathological features, cognitive impairment, and the presence of the APOE4 allele in DLPFC. We prioritized two independent functional SNPs (rs157580 and rs439401) significantly associated with jxn1.2.2 transcript abundance and DNA methylation levels. These SNPs are located within active chromatin regions and affect brain-related transcription factor-binding affinities. The two SNPs shared effects on the jxn1.2.2 transcript between European and African ethnic groups. The novel APOE functional elements provide potential therapeutic targets with mechanistic insight into the disease etiology.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.