Fabrication of PMMA nanocomposite biomaterials reinforced by cellulose nanocrystals extracted from rice husk for dental applications

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Friction Pub Date : 2024-08-29 DOI:10.1007/s40544-024-0940-1
Ahmed Fouly, Walid M. Daoush, Hesham I. Elqady, Hany S. Abdo
{"title":"Fabrication of PMMA nanocomposite biomaterials reinforced by cellulose nanocrystals extracted from rice husk for dental applications","authors":"Ahmed Fouly, Walid M. Daoush, Hesham I. Elqady, Hany S. Abdo","doi":"10.1007/s40544-024-0940-1","DOIUrl":null,"url":null,"abstract":"<p>The primary objective of global studies is to develop the properties and durability of polymers for various applications. When it comes to dental disability, denture base materials must have sufficient mechanical and tribological performance in order to withstand the forces experienced in the mouth. This work aims to investigate the effects of the addition of low content of cellulose nanocrystals (CNC) on the mechanical and tribological performance of the polymethyl methacrylate (PMMA) nanocomposites. Different weight percent of CNC (0, 0.2, 0.4, 0.6, and 0.8 wt%) were added to the PMMA matrix followed by ball milling to evenly distribute the nanoparticles reinforced phase in the matrix phase. The findings emphasize the significant impact of CNC integration on the performance of PMMA nanocomposites. By increasing the content of the CNC nanoparticles, the mechanical properties of PMMA were improved. In addition, the tribological outcomes demonstrated a significant reduction in the friction coefficient besides an enhancement in the wear resistance as the weight percentage of nanoparticles increased. The surface of the worn samples was investigated by utilizing SEM to identify the wear mechanisms corresponding to the different compositions. In addition, a finite elment model (FEM) was developed to ascertain the thickness of the worn layer and the generated stressed on the surfaces of the nanocomposite throughout the friction process.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0940-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of global studies is to develop the properties and durability of polymers for various applications. When it comes to dental disability, denture base materials must have sufficient mechanical and tribological performance in order to withstand the forces experienced in the mouth. This work aims to investigate the effects of the addition of low content of cellulose nanocrystals (CNC) on the mechanical and tribological performance of the polymethyl methacrylate (PMMA) nanocomposites. Different weight percent of CNC (0, 0.2, 0.4, 0.6, and 0.8 wt%) were added to the PMMA matrix followed by ball milling to evenly distribute the nanoparticles reinforced phase in the matrix phase. The findings emphasize the significant impact of CNC integration on the performance of PMMA nanocomposites. By increasing the content of the CNC nanoparticles, the mechanical properties of PMMA were improved. In addition, the tribological outcomes demonstrated a significant reduction in the friction coefficient besides an enhancement in the wear resistance as the weight percentage of nanoparticles increased. The surface of the worn samples was investigated by utilizing SEM to identify the wear mechanisms corresponding to the different compositions. In addition, a finite elment model (FEM) was developed to ascertain the thickness of the worn layer and the generated stressed on the surfaces of the nanocomposite throughout the friction process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用从稻壳中提取的纤维素纳米晶体制作牙科用 PMMA 纳米复合生物材料
全球研究的主要目的是为各种应用开发聚合物的性能和耐用性。就牙科残疾而言,义齿基底材料必须具有足够的机械和摩擦性能,以承受口腔中的作用力。这项工作旨在研究添加低含量的纤维素纳米晶体(CNC)对聚甲基丙烯酸甲酯(PMMA)纳米复合材料的机械和摩擦学性能的影响。将不同重量百分比的 CNC(0、0.2、0.4、0.6 和 0.8 wt%)添加到 PMMA 基体中,然后进行球磨,使纳米颗粒增强相均匀分布在基体相中。研究结果强调了 CNC 集成对 PMMA 纳米复合材料性能的重要影响。通过增加 CNC 纳米粒子的含量,PMMA 的机械性能得到了改善。此外,摩擦学结果表明,随着纳米颗粒重量百分比的增加,摩擦系数显著降低,同时耐磨性也有所提高。利用扫描电镜对磨损样品的表面进行了研究,以确定与不同成分相对应的磨损机制。此外,还建立了有限元模型(FEM),以确定磨损层的厚度以及在整个摩擦过程中纳米复合材料表面产生的应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
期刊最新文献
A “bricks-and-mortar” structured graphene oxide/polyvinyl alcohol coating: enhanced water interfacial lubrication and durability Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil Excellent lubricating hydrogels with rapid photothermal sterilization for medical catheters coating A robust low-friction triple network hydrogel based on multiple synergistic enhancement mechanisms Tribological behavior of TiN, AlTiN, and AlTiCrN coatings in atmospheric and vacuum environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1