Stabilized Cuδ+-OH species on in situ reconstructed Cu nanoparticles for CO2-to-C2H4 conversion in neutral media

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-08-29 DOI:10.1038/s41467-024-52004-2
Lei Wang, Zhiwen Chen, Yi Xiao, Linke Huang, Xiyang Wang, Holly Fruehwald, Dmitry Akhmetzyanov, Mathew Hanson, Zuolong Chen, Ning Chen, Brant Billinghurst, Rodney D. L. Smith, Chandra Veer Singh, Zhongchao Tan, Yimin A. Wu
{"title":"Stabilized Cuδ+-OH species on in situ reconstructed Cu nanoparticles for CO2-to-C2H4 conversion in neutral media","authors":"Lei Wang, Zhiwen Chen, Yi Xiao, Linke Huang, Xiyang Wang, Holly Fruehwald, Dmitry Akhmetzyanov, Mathew Hanson, Zuolong Chen, Ning Chen, Brant Billinghurst, Rodney D. L. Smith, Chandra Veer Singh, Zhongchao Tan, Yimin A. Wu","doi":"10.1038/s41467-024-52004-2","DOIUrl":null,"url":null,"abstract":"<p>Achieving large-scale electrochemical CO<sub>2</sub> reduction to multicarbon products with high selectivity using membrane electrode assembly (MEA) electrolyzers in neutral electrolyte is promising for carbon neutrality. However, the unsatisfactory multicarbon products selectivity and unclear reaction mechanisms in an MEA have hindered its further development. Here, we report a strategy that manipulates the interfacial microenvironment of Cu nanoparticles in an MEA to suppress hydrogen evolution reaction and enhance C<sub>2</sub>H<sub>4</sub> conversion. In situ multimodal characterizations consistently reveal well-stabilized Cu<sup>δ+</sup>-OH species as active sites during MEA testing. The OH radicals generated in situ from water create a locally oxidative microenvironment on the copper surface, stabilizing the Cu<sup>δ+</sup> species and leading to an irreversible and asynchronous change in morphology and valence, yielding high-curvature nanowhiskers. Consequently, we deliver a selective C<sub>2</sub>H<sub>4</sub> production with a Faradaic efficiency of 55.6% ± 2.8 at 316 mA cm<sup>−2</sup> in neutral media.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52004-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving large-scale electrochemical CO2 reduction to multicarbon products with high selectivity using membrane electrode assembly (MEA) electrolyzers in neutral electrolyte is promising for carbon neutrality. However, the unsatisfactory multicarbon products selectivity and unclear reaction mechanisms in an MEA have hindered its further development. Here, we report a strategy that manipulates the interfacial microenvironment of Cu nanoparticles in an MEA to suppress hydrogen evolution reaction and enhance C2H4 conversion. In situ multimodal characterizations consistently reveal well-stabilized Cuδ+-OH species as active sites during MEA testing. The OH radicals generated in situ from water create a locally oxidative microenvironment on the copper surface, stabilizing the Cuδ+ species and leading to an irreversible and asynchronous change in morphology and valence, yielding high-curvature nanowhiskers. Consequently, we deliver a selective C2H4 production with a Faradaic efficiency of 55.6% ± 2.8 at 316 mA cm−2 in neutral media.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位重构铜纳米颗粒上的稳定 Cuδ+-OH 物种,用于在中性介质中将 CO2 转化为 C2H4
在中性电解质中使用膜电极组件(MEA)电解槽实现大规模电化学二氧化碳还原成多碳产品的高选择性是实现碳中和的大好前景。然而,MEA 中的多碳产物选择性并不理想,反应机制也不明确,这阻碍了其进一步发展。在此,我们报告了一种在 MEA 中操纵铜纳米粒子界面微环境以抑制氢进化反应并提高 C2H4 转化率的策略。在 MEA 测试过程中,原位多模式表征始终显示出稳定良好的 Cuδ+-OH 物种是活性位点。水在原位产生的羟基自由基在铜表面创造了局部氧化微环境,稳定了 Cuδ+ 物种,导致形态和价态发生不可逆和不同步的变化,产生了高曲率纳米晶须。因此,我们实现了选择性 C2H4 生产,在中性介质中,316 mA cm-2 的法拉第效率为 55.6% ± 2.8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Cobalt-catalyzed hydrothiolation of alkynes for the diverse synthesis of branched alkenyl sulfides Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils GAD65 tunes the functions of Best1 as a GABA receptor and a neurotransmitter conducting channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1