Organic-Inorganic Coupling Strategy: Clamp Effect to Capture Mg2+ for Aqueous Magnesium Ion Capacitor

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-08-28 DOI:10.1002/anie.202412735
Mudi Li, Yaxi Ding, Siwen Zhang, Minghui Liu, Jiazhuo Li, Ying Sun, Lingfeng Zhu, Hui Li, Zhi Gen Yu, Yong-Wei Zhang, Hongge Pan, Bosi Yin, Tianyi Ma
{"title":"Organic-Inorganic Coupling Strategy: Clamp Effect to Capture Mg2+ for Aqueous Magnesium Ion Capacitor","authors":"Mudi Li, Yaxi Ding, Siwen Zhang, Minghui Liu, Jiazhuo Li, Ying Sun, Lingfeng Zhu, Hui Li, Zhi Gen Yu, Yong-Wei Zhang, Hongge Pan, Bosi Yin, Tianyi Ma","doi":"10.1002/anie.202412735","DOIUrl":null,"url":null,"abstract":"The rapid transport kinetics of divalent magnesium ions are crucial for achieving distinguished performance in aqueous magnesium-ion battery-based energy storage capacitors. However, the strong electrostatic interaction between Mg2+ with double charges and the host material significantly restricts Mg2+ diffusivity. In this study, a new composite material, EDA-Mn2O3, with double-energy storage mechanisms comprising an organic phase (ethylenediamine, EDA) and an inorganic phase (manganese sesquioxide) was successfully synthesized via an organic-inorganic coupling strategy. Inorganic-phase Mn2O3 serves as a scaffold structure, enabling the stable and reversible intercalation/deintercalation of magnesium ions. The organic phase EDA adsorbed onto the surface of Mn2O3 as an elastic matrix, works synergistically with Mn2O3, and utilizes bidentate chelating ligands to capture Mg2+. The robust coordination effect of terminal biprotonic amine in EDA enhances the structural diversity and specific capacity characteristics of the composite material, as further corroborated by density functional theory (DFT) calculations, ex-situ XRD, XPS, and Raman spectroscopy. As expected, an aqueous magnesium ion capacitor with EDA-Mn2O3 serving as the cathode can reach 110.17 Wh/kg. This study aimed to explore the practical application value of organic‒inorganic composite electrodes with double-energy storage mechanisms.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"6 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412735","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid transport kinetics of divalent magnesium ions are crucial for achieving distinguished performance in aqueous magnesium-ion battery-based energy storage capacitors. However, the strong electrostatic interaction between Mg2+ with double charges and the host material significantly restricts Mg2+ diffusivity. In this study, a new composite material, EDA-Mn2O3, with double-energy storage mechanisms comprising an organic phase (ethylenediamine, EDA) and an inorganic phase (manganese sesquioxide) was successfully synthesized via an organic-inorganic coupling strategy. Inorganic-phase Mn2O3 serves as a scaffold structure, enabling the stable and reversible intercalation/deintercalation of magnesium ions. The organic phase EDA adsorbed onto the surface of Mn2O3 as an elastic matrix, works synergistically with Mn2O3, and utilizes bidentate chelating ligands to capture Mg2+. The robust coordination effect of terminal biprotonic amine in EDA enhances the structural diversity and specific capacity characteristics of the composite material, as further corroborated by density functional theory (DFT) calculations, ex-situ XRD, XPS, and Raman spectroscopy. As expected, an aqueous magnesium ion capacitor with EDA-Mn2O3 serving as the cathode can reach 110.17 Wh/kg. This study aimed to explore the practical application value of organic‒inorganic composite electrodes with double-energy storage mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机-无机耦合策略:为水性镁离子电容器捕获 Mg2+ 的钳位效应
二价镁离子的快速迁移动力学是水基镁离子电池储能电容器实现卓越性能的关键。然而,带双电荷的 Mg2+ 与宿主材料之间的强静电相互作用极大地限制了 Mg2+ 的扩散性。本研究通过有机-无机耦合策略,成功合成了一种具有双重储能机制的新型复合材料 EDA-Mn2O3,它由有机相(乙二胺,EDA)和无机相(二氧化锰)组成。无机相 Mn2O3 可作为支架结构,实现镁离子稳定、可逆的插层/脱插层。有机相 EDA 作为弹性基质吸附在 Mn2O3 表面,与 Mn2O3 协同作用,并利用双齿螯合配体捕获 Mg2+。正如密度泛函理论(DFT)计算、原位 XRD、XPS 和拉曼光谱所进一步证实的那样,EDA 中末端双质子胺的强大配位效应增强了复合材料的结构多样性和比容量特性。正如预期的那样,以 EDA-Mn2O3 为阴极的水镁离子电容器可达到 110.17 Wh/kg。本研究旨在探索具有双重储能机制的有机-无机复合电极的实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Molecular‐level Modulation of N, S‐co‐doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene Copper‐Catalyzed Regioselective and Enantioselective Hydropyridylation of Dienes for the Synthesis of Chiral Diaryl Compounds via Concerted Nucleophilic Aromatic Substitution Ultrafast Luminescence Detection with Selective Adsorption of Carbon Disulfide in a Gold(I) Metal−Organic Framework General and Fast Gas–Solid Synthesis of Functional MXenes and Derivatives on the Scale of Tens of Grams Mechanochromic Organic Micro‐Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1