Novel Diclofenac-NO Donor With High Affinity for Human Serum Albumin Induces Endoplasmic Reticulum Stress-mediated Cell Death in Human Pancreatic Cancer Cells.
{"title":"Novel Diclofenac-NO Donor With High Affinity for Human Serum Albumin Induces Endoplasmic Reticulum Stress-mediated Cell Death in Human Pancreatic Cancer Cells.","authors":"Koji Nishi, Ryo Kanda, Kaho Takasaki, Ayano Tamori, Yoshifumi Arimura, Shuhei Imoto, Hirotaka Murase, Kenji Tsukigawa, Masaki Otagiri, Keishi Yamasaki","doi":"10.21873/anticanres.17204","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Nitric oxide (NO) has various physiological activities. In this study, diclofenac (DF) which has a high affinity for human serum albumin (HSA) was nitrosylated to a novel NO donor (NDF). The cytotoxic effects and the mechanism of NDF were investigated.</p><p><strong>Materials and methods: </strong>Binding experiments of NDF to HSA were performed by the ultrafiltration method. NO was measured by the Griess method. The number of dead cells were measured using annexin V. Apoptosis and endoplasmic reticulum stress were evaluated by western blotting.</p><p><strong>Results: </strong>NDF competitively inhibits the binding of DF to HSA, suggesting that NDF and DF have equivalent binding characteristics. NDF rapidly released NOx after being dissolved. At 200 μM, NDF induced cell death in human pancreatic cancer cells. Western blotting showed that NDF promoted the cleavage of PARP, caspase-3, and caspase-7. Inhibitors of caspase-1 and caspase-9 significantly suppressed NDF-induced cell death, as did a non-specific caspase inhibitor (Z-VAD). In addition, NDF significantly increased the expression of the endoplasmic reticulum stress marker, CHOP.</p><p><strong>Conclusion: </strong>NDF induces apoptotic cell death by causing endoplasmic reticulum stress. The findings of this study suggest that NDF may become a promising compound for the treatment of pancreatic cancer.</p>","PeriodicalId":8072,"journal":{"name":"Anticancer research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anticancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/anticanres.17204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Nitric oxide (NO) has various physiological activities. In this study, diclofenac (DF) which has a high affinity for human serum albumin (HSA) was nitrosylated to a novel NO donor (NDF). The cytotoxic effects and the mechanism of NDF were investigated.
Materials and methods: Binding experiments of NDF to HSA were performed by the ultrafiltration method. NO was measured by the Griess method. The number of dead cells were measured using annexin V. Apoptosis and endoplasmic reticulum stress were evaluated by western blotting.
Results: NDF competitively inhibits the binding of DF to HSA, suggesting that NDF and DF have equivalent binding characteristics. NDF rapidly released NOx after being dissolved. At 200 μM, NDF induced cell death in human pancreatic cancer cells. Western blotting showed that NDF promoted the cleavage of PARP, caspase-3, and caspase-7. Inhibitors of caspase-1 and caspase-9 significantly suppressed NDF-induced cell death, as did a non-specific caspase inhibitor (Z-VAD). In addition, NDF significantly increased the expression of the endoplasmic reticulum stress marker, CHOP.
Conclusion: NDF induces apoptotic cell death by causing endoplasmic reticulum stress. The findings of this study suggest that NDF may become a promising compound for the treatment of pancreatic cancer.
期刊介绍:
ANTICANCER RESEARCH is an independent international peer-reviewed journal devoted to the rapid publication of high quality original articles and reviews on all aspects of experimental and clinical oncology. Prompt evaluation of all submitted articles in confidence and rapid publication within 1-2 months of acceptance are guaranteed.
ANTICANCER RESEARCH was established in 1981 and is published monthly (bimonthly until the end of 2008). Each annual volume contains twelve issues and index. Each issue may be divided into three parts (A: Reviews, B: Experimental studies, and C: Clinical and Epidemiological studies).
Special issues, presenting the proceedings of meetings or groups of papers on topics of significant progress, will also be included in each volume. There is no limitation to the number of pages per issue.