{"title":"Navigating Complexity in Postural Orthostatic Tachycardia Syndrome.","authors":"Hui-Qi Qu, Hakon Hakonarson","doi":"10.3390/biomedicines12081911","DOIUrl":null,"url":null,"abstract":"<p><p>Postural Orthostatic Tachycardia Syndrome (POTS) affects up to 1% of the US population, predominantly women, and is characterized by a complex, elusive etiology and heterogeneous phenotypes. This review delves into the intricate physiology and etiology of POTS, decoding the roles of the sinoatrial node, the autonomic nervous system, fluid dynamics, and the interplay between the immune and endocrine systems. It further examines key contributing factors such as dysautonomia, thoracic hypovolemia, autonomic neuropathies, sympathetic denervation, autoimmune responses, and associations with conditions such as small-fiber neuropathy and mast cell activation syndrome. Given the numerous mysteries surrounding POTS, we also cautiously bring attention to sinoatrial node and myocardial function, particularly in how the heart responds to stress despite exhibiting a normal cardiac phenotype at rest. The potential of genomic research in elucidating the underlying mechanisms of POTS is emphasized, suggesting this as a valuable approach that is likely to improve our understanding of the genetic underpinnings of POTS. The review introduces a tentative classification system for the etiological factors in POTS, which seeks to capture the condition's diverse aspects by categorizing various etiological factors and acknowledging co-occurring conditions. This classification, while aiming to enhance understanding and optimize treatment targets, is presented as a preliminary model needing further study and refinement. This review underscores the ongoing need for research to unravel the complexities of POTS and to develop targeted therapies that can improve patient outcomes.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines12081911","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Postural Orthostatic Tachycardia Syndrome (POTS) affects up to 1% of the US population, predominantly women, and is characterized by a complex, elusive etiology and heterogeneous phenotypes. This review delves into the intricate physiology and etiology of POTS, decoding the roles of the sinoatrial node, the autonomic nervous system, fluid dynamics, and the interplay between the immune and endocrine systems. It further examines key contributing factors such as dysautonomia, thoracic hypovolemia, autonomic neuropathies, sympathetic denervation, autoimmune responses, and associations with conditions such as small-fiber neuropathy and mast cell activation syndrome. Given the numerous mysteries surrounding POTS, we also cautiously bring attention to sinoatrial node and myocardial function, particularly in how the heart responds to stress despite exhibiting a normal cardiac phenotype at rest. The potential of genomic research in elucidating the underlying mechanisms of POTS is emphasized, suggesting this as a valuable approach that is likely to improve our understanding of the genetic underpinnings of POTS. The review introduces a tentative classification system for the etiological factors in POTS, which seeks to capture the condition's diverse aspects by categorizing various etiological factors and acknowledging co-occurring conditions. This classification, while aiming to enhance understanding and optimize treatment targets, is presented as a preliminary model needing further study and refinement. This review underscores the ongoing need for research to unravel the complexities of POTS and to develop targeted therapies that can improve patient outcomes.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.