{"title":"Effects of intracerebral noradrenaline on cognitive decline associated with the loss of occlusal support.","authors":"Tomoka Ichikawa-Kato, Tetsuya Hara, Chie Yamada-Kubota, Miho Kuwahara, Asuka Murakami, Shogo Minagi","doi":"10.2186/jpr.JPR_D_23_00231","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The lack of occlusal support reportedly reduces cognitive function; however, the underlying mechanisms remain unclear. The locus coeruleus, which is located adjacent to the trigeminal mesencephalic nucleus, secretes noradrenaline throughout the brain. In this study, we evaluated the effects of noradrenaline in the hippocampus and cerebral cortex on cognitive decline following tooth extraction in rats.</p><p><strong>Methods: </strong>We performed passive avoidance experiments on male Wistar rats with extracted maxillary molars and determined the neuron density in the locus coeruleus and trigeminal mesencephalic nucleus using immunostaining and Nissl staining, respectively. We also assessed noradrenaline concentrations in the hippocampus and cerebral cortex using enzyme-linked immunosorbent assay.</p><p><strong>Results: </strong>In the passive avoidance experiment, the latency in the bright compartment was significantly shorter (P < 0.05) in the extraction group than in the control group. The numbers of cells in the locus coeruleus and trigeminal nucleus were significantly lower (P < 0.05) in the extraction group compared to those in the control group. The noradrenaline levels in the hippocampus and cerebral cortex were also significantly lower (P < 0.05) in the extraction group than those in the control group.</p><p><strong>Conclusions: </strong>The lack of occlusal support associated with tooth extraction reduces the number of cells in the trigeminal mesencephalic nucleus and locus coeruleus, which may reduce the supply of noradrenaline to the cerebral cortex and hippocampus, leading to a decline in cognitive function.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00231","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The lack of occlusal support reportedly reduces cognitive function; however, the underlying mechanisms remain unclear. The locus coeruleus, which is located adjacent to the trigeminal mesencephalic nucleus, secretes noradrenaline throughout the brain. In this study, we evaluated the effects of noradrenaline in the hippocampus and cerebral cortex on cognitive decline following tooth extraction in rats.
Methods: We performed passive avoidance experiments on male Wistar rats with extracted maxillary molars and determined the neuron density in the locus coeruleus and trigeminal mesencephalic nucleus using immunostaining and Nissl staining, respectively. We also assessed noradrenaline concentrations in the hippocampus and cerebral cortex using enzyme-linked immunosorbent assay.
Results: In the passive avoidance experiment, the latency in the bright compartment was significantly shorter (P < 0.05) in the extraction group than in the control group. The numbers of cells in the locus coeruleus and trigeminal nucleus were significantly lower (P < 0.05) in the extraction group compared to those in the control group. The noradrenaline levels in the hippocampus and cerebral cortex were also significantly lower (P < 0.05) in the extraction group than those in the control group.
Conclusions: The lack of occlusal support associated with tooth extraction reduces the number of cells in the trigeminal mesencephalic nucleus and locus coeruleus, which may reduce the supply of noradrenaline to the cerebral cortex and hippocampus, leading to a decline in cognitive function.