A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2024-08-30 DOI:10.1016/j.compind.2024.104155
{"title":"A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks","authors":"","doi":"10.1016/j.compind.2024.104155","DOIUrl":null,"url":null,"abstract":"<div><p>In industrial sectors such as shipping, chemical processing, and energy production, centrifugal pumps often experience failures due to harsh operational environments, making it challenging to accurately identify fault types. Traditional fault diagnosis methods, which heavily rely on existing fault datasets, suffer from limited generalization capabilities, especially when substantial labeled and specific fault sample data are lacking. This paper proposes a novel fault diagnosis approach for centrifugal pumps, utilizing a digital twin (DT) framework powered by a graph transfer learning model to address this issue. Firstly, a high-fidelity DT model is constructed to simulate the flow-induced vibration response of the impeller under different health states to enrich the type and scale of the dataset. Secondly, a graph convolutional neural networks (GCN) model is constructed to learn the knowledge of simulation data, and the Wasserstein distance between simulation data and measured data is optimized for adversarial domain adaptation, thereby achieving efficient cross-domain fault diagnosis. Experimental results demonstrate that the proposed algorithm delivers effective fault diagnosis with minimal prior knowledge and outperforms comparable models. Furthermore, the DT system developed using the proposed model enhances the operational reliability of centrifugal pumps, reduces maintenance costs, and presents an innovative application of DT technology in industrial fault diagnosis.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000836","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial sectors such as shipping, chemical processing, and energy production, centrifugal pumps often experience failures due to harsh operational environments, making it challenging to accurately identify fault types. Traditional fault diagnosis methods, which heavily rely on existing fault datasets, suffer from limited generalization capabilities, especially when substantial labeled and specific fault sample data are lacking. This paper proposes a novel fault diagnosis approach for centrifugal pumps, utilizing a digital twin (DT) framework powered by a graph transfer learning model to address this issue. Firstly, a high-fidelity DT model is constructed to simulate the flow-induced vibration response of the impeller under different health states to enrich the type and scale of the dataset. Secondly, a graph convolutional neural networks (GCN) model is constructed to learn the knowledge of simulation data, and the Wasserstein distance between simulation data and measured data is optimized for adversarial domain adaptation, thereby achieving efficient cross-domain fault diagnosis. Experimental results demonstrate that the proposed algorithm delivers effective fault diagnosis with minimal prior knowledge and outperforms comparable models. Furthermore, the DT system developed using the proposed model enhances the operational reliability of centrifugal pumps, reduces maintenance costs, and presents an innovative application of DT technology in industrial fault diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图卷积神经网络的迁移学习驱动的离心泵故障诊断数字孪生系统
在航运、化学处理和能源生产等工业领域,离心泵经常会因恶劣的运行环境而发生故障,因此准确识别故障类型具有挑战性。传统的故障诊断方法在很大程度上依赖于现有的故障数据集,但归纳能力有限,尤其是在缺乏大量标注和特定故障样本数据的情况下。本文提出了一种新型离心泵故障诊断方法,利用图转移学习模型驱动的数字孪生(DT)框架来解决这一问题。首先,构建了一个高保真 DT 模型,以模拟不同健康状态下叶轮的流动诱导振动响应,从而丰富数据集的类型和规模。其次,构建图卷积神经网络(GCN)模型来学习仿真数据知识,并优化仿真数据与测量数据之间的瓦瑟斯坦距离,以实现对抗性域适应,从而实现高效的跨域故障诊断。实验结果表明,所提出的算法能以最少的先验知识进行有效的故障诊断,其性能优于同类模型。此外,利用所提模型开发的 DT 系统提高了离心泵的运行可靠性,降低了维护成本,是 DT 技术在工业故障诊断领域的创新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection Apple varieties and growth prediction with time series classification based on deep learning to impact the harvesting decisions Maximum subspace transferability discriminant analysis: A new cross-domain similarity measure for wind-turbine fault transfer diagnosis Dual channel visible graph convolutional neural network for microleakage monitoring of pipeline weld homalographic cracks Video-based automatic people counting for public transport: On-bus versus off-bus deployment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1