Ahmed N. Elbattrawy , Ahmed H. Abd El-Malek , Sherif I. Rabia , Waheed K. Zahra
{"title":"Security-reliability trade-off analysis for transmit antenna selection in cognitive ambient backscatter communications","authors":"Ahmed N. Elbattrawy , Ahmed H. Abd El-Malek , Sherif I. Rabia , Waheed K. Zahra","doi":"10.1016/j.peva.2024.102441","DOIUrl":null,"url":null,"abstract":"<div><p>Massive deployment of IoT devices raises the need for energy-efficient spectrum-efficient low-cost communications. Ambient backscatter communication (AmBC) technology provides a promising solution to achieve that. Moreover, incorporating AmBC with cognitive radio networks (CRNs) achieves better spectrum efficiency; however, this comes with performance drawbacks. In this work, we investigate the security and reliability performance of an underlay CRN with AmBC, where the backscattering device (BD) exploits the radio frequency (RF) signals of the secondary transmitter (ST), and both the ST and the BD share a common receiver. Different from previous work, we consider an ST with multiple antenna. The ST employs a transmit antenna selection (TAS) scheme to enhance the ST performance and overcome the performance degradation caused by the BD interference. TAS exploits multiple antenna diversity with lower hardware complexity and power consumption. Considering the Nakagami-<span><math><mi>m</mi></math></span> fading model, closed-form expressions are derived for the outage probability (OP) and intercept probability (IP) of both the ST and the BD transmissions at the legitimate receiver and the eavesdropper. Moreover, the asymptotic behavior of OPs and IPs is also investigated in the high signal-to-noise ratio regime and the high main-to-eavesdropper ratio regime, respectively. Monte Carlo simulations are performed to validate the derived closed-form expressions. Numerical results show that employing TAS enhances the ST and BD reliability performance by percentages up to 98% and 80%, respectively, at high primary user interference threshold values. Moreover, it results in a better security-reliability trade-off for the ST and the BD.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"166 ","pages":"Article 102441"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531624000464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Massive deployment of IoT devices raises the need for energy-efficient spectrum-efficient low-cost communications. Ambient backscatter communication (AmBC) technology provides a promising solution to achieve that. Moreover, incorporating AmBC with cognitive radio networks (CRNs) achieves better spectrum efficiency; however, this comes with performance drawbacks. In this work, we investigate the security and reliability performance of an underlay CRN with AmBC, where the backscattering device (BD) exploits the radio frequency (RF) signals of the secondary transmitter (ST), and both the ST and the BD share a common receiver. Different from previous work, we consider an ST with multiple antenna. The ST employs a transmit antenna selection (TAS) scheme to enhance the ST performance and overcome the performance degradation caused by the BD interference. TAS exploits multiple antenna diversity with lower hardware complexity and power consumption. Considering the Nakagami- fading model, closed-form expressions are derived for the outage probability (OP) and intercept probability (IP) of both the ST and the BD transmissions at the legitimate receiver and the eavesdropper. Moreover, the asymptotic behavior of OPs and IPs is also investigated in the high signal-to-noise ratio regime and the high main-to-eavesdropper ratio regime, respectively. Monte Carlo simulations are performed to validate the derived closed-form expressions. Numerical results show that employing TAS enhances the ST and BD reliability performance by percentages up to 98% and 80%, respectively, at high primary user interference threshold values. Moreover, it results in a better security-reliability trade-off for the ST and the BD.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science