{"title":"2D/2D Bi2WO6/C3N5 S-scheme heterojunction for highly selective production of CH4 by photocatalytic CO2 reduction under visible light","authors":"","doi":"10.1016/j.apcata.2024.119914","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic CO<sub>2</sub> reduction is a practical solution to the energy dilemma and environmental damage caused by greenhouse gases, and it is very important to explore high-efficiency photocatalysts. In this study, a novel Bi<sub>2</sub>WO<sub>6</sub>/C<sub>3</sub>N<sub>5</sub> step(S)-scheme heterojunction was successfully constructed and applied for CO<sub>2</sub> photoreduction. The 2D/2D structure showed excellent photocatalytic properties, with methane production reaching 1.976 μmol·g<sup>−1</sup>·h<sup>−1</sup> and selectivity reaching 100 % under 5 hours of visible light irradiation. The result indicates that combining Bi<sub>2</sub>WO<sub>6</sub> and C<sub>3</sub>N<sub>5</sub> can promote interfacial charge separation and maintain the optimal reducing ability of photogenerated electrons. Based on experimental and theoretical calculations, we characterized the reaction mechanism and heterojunction formation mechanism. This study offers a novel approach to improve the selectivity and photocatalytic efficiency of CO<sub>2</sub> reduction products.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24003594","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic CO2 reduction is a practical solution to the energy dilemma and environmental damage caused by greenhouse gases, and it is very important to explore high-efficiency photocatalysts. In this study, a novel Bi2WO6/C3N5 step(S)-scheme heterojunction was successfully constructed and applied for CO2 photoreduction. The 2D/2D structure showed excellent photocatalytic properties, with methane production reaching 1.976 μmol·g−1·h−1 and selectivity reaching 100 % under 5 hours of visible light irradiation. The result indicates that combining Bi2WO6 and C3N5 can promote interfacial charge separation and maintain the optimal reducing ability of photogenerated electrons. Based on experimental and theoretical calculations, we characterized the reaction mechanism and heterojunction formation mechanism. This study offers a novel approach to improve the selectivity and photocatalytic efficiency of CO2 reduction products.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.