Fatemeh (Baran) Karimi , Amir Mehrpanah , Reza Rawassizadeh
{"title":"LightDepth: A resource efficient depth estimation approach for dealing with ground truth sparsity via curriculum learning","authors":"Fatemeh (Baran) Karimi , Amir Mehrpanah , Reza Rawassizadeh","doi":"10.1016/j.robot.2024.104784","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate depth estimation from monocular images is critical for various applications such as robotics, augmented reality, and autonomous navigation. However, achieving high accuracy while maintaining computational efficiency is a major challenge, particularly for resource-constrained devices. In this paper, we present <em>LightDepth</em>, an approach that leverages curriculum learning to estimate depth efficiently while taking into account resource constraints. It modifies the ground truth sparse depth maps from the KITTI dataset by resizing them to 31 extents during training to reduce sparsity and control complexity. The resulting model achieves comparable accuracy to state-of-the-art large models while outperforming them in response time by 71%. Our approach outperforms resource-efficient models regarding depth accuracy (measured by RMSE), achieving a 56% improvement. <em>LightDepth</em> is designed to be fast and resource-efficient, making it suitable for deployment in resource-constrained devices. It also balances the trade-off between accuracy and resource efficiency. All codes are available online at <span><span>https://github.com/fatemehkarimii/lightdepth</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"181 ","pages":"Article 104784"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001684","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate depth estimation from monocular images is critical for various applications such as robotics, augmented reality, and autonomous navigation. However, achieving high accuracy while maintaining computational efficiency is a major challenge, particularly for resource-constrained devices. In this paper, we present LightDepth, an approach that leverages curriculum learning to estimate depth efficiently while taking into account resource constraints. It modifies the ground truth sparse depth maps from the KITTI dataset by resizing them to 31 extents during training to reduce sparsity and control complexity. The resulting model achieves comparable accuracy to state-of-the-art large models while outperforming them in response time by 71%. Our approach outperforms resource-efficient models regarding depth accuracy (measured by RMSE), achieving a 56% improvement. LightDepth is designed to be fast and resource-efficient, making it suitable for deployment in resource-constrained devices. It also balances the trade-off between accuracy and resource efficiency. All codes are available online at https://github.com/fatemehkarimii/lightdepth.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.