{"title":"An adaptive framework for trajectory following in changing-contact robot manipulation tasks","authors":"Saif Sidhik , Mohan Sridharan , Dirk Ruiken","doi":"10.1016/j.robot.2024.104785","DOIUrl":null,"url":null,"abstract":"<div><p>We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks, efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"181 ","pages":"Article 104785"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024001696/pdfft?md5=63b435469b19c38172eec7bb29399ca6&pid=1-s2.0-S0921889024001696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001696","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks, efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.