Enhanced osmosis model with bilateral total variation for effective shadow removal

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-08-29 DOI:10.1016/j.camwa.2024.08.014
Amine Laghrib , Fakhr-Eddine Limami , Abdeljalil Nachaoui
{"title":"Enhanced osmosis model with bilateral total variation for effective shadow removal","authors":"Amine Laghrib ,&nbsp;Fakhr-Eddine Limami ,&nbsp;Abdeljalil Nachaoui","doi":"10.1016/j.camwa.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper presents an innovative technique for shadow images removal. The method involves redefining a contemporary osmosis model by incorporating bilateral total variation (TV) operators. This integration allows to take advantage of robust anisotropic diffusion, resulting in improved image restoration. The paper also outlines new mathematical derivation of the bilateral TV and a combination with nonlinear anisotropic transport term. The experimental results substantiate the effectiveness of the anisotropic osmosis model, showcasing its superior qualitative and quantitative performance when compared to current state-of-the-art techniques.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003687","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper presents an innovative technique for shadow images removal. The method involves redefining a contemporary osmosis model by incorporating bilateral total variation (TV) operators. This integration allows to take advantage of robust anisotropic diffusion, resulting in improved image restoration. The paper also outlines new mathematical derivation of the bilateral TV and a combination with nonlinear anisotropic transport term. The experimental results substantiate the effectiveness of the anisotropic osmosis model, showcasing its superior qualitative and quantitative performance when compared to current state-of-the-art techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有双边总变化的增强渗透模型,可有效去除阴影
本研究论文介绍了一种用于去除阴影图像的创新技术。该方法结合了双边总变异(TV)算子,重新定义了当代渗透模型。这种整合可以利用稳健的各向异性扩散,从而改善图像修复效果。论文还概述了双边 TV 的新数学推导以及与非线性各向异性传输项的结合。实验结果证明了各向异性渗透模型的有效性,与当前最先进的技术相比,该模型在定性和定量方面都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1