Rito Brata Nath , Tarun Rambha , Maximilian Schiffer
{"title":"On the impact of co-optimizing station locations, trip assignment, and charging schedules for electric buses","authors":"Rito Brata Nath , Tarun Rambha , Maximilian Schiffer","doi":"10.1016/j.trc.2024.104839","DOIUrl":null,"url":null,"abstract":"<div><p>As many public transportation systems around the world transition to electric buses, the planning and operation of fleets can be improved via tailored decision-support tools. In this work, we study the impact of jointly locating charging facilities, assigning electric buses to trips, and determining when and where to charge the buses. We propose a mixed integer linear program that co-optimizes planning and operational decisions jointly and an iterated local search heuristic to solve large-scale instances. Herein, we use a concurrent scheduler algorithm to generate an initial feasible solution, which serves as a starting point for our iterated local search algorithm. In the sequential case, we first optimize trip assignments and charging locations. Charging schedules are then determined after fixing the optimal decisions from the first level. The joint model, on the other hand, integrates charge scheduling within the local search procedure. The solution quality of the joint and sequential iterated local search models are compared for multiple real-world bus transit networks. Our results demonstrate that joint models can help further improve operating costs by 14.1% and lower total costs by about 4.1% on average compared with sequential models. In addition, energy consumption costs and contracted power capacity costs have been reduced significantly due to our integrated planning approach.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"167 ","pages":"Article 104839"},"PeriodicalIF":7.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003607","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As many public transportation systems around the world transition to electric buses, the planning and operation of fleets can be improved via tailored decision-support tools. In this work, we study the impact of jointly locating charging facilities, assigning electric buses to trips, and determining when and where to charge the buses. We propose a mixed integer linear program that co-optimizes planning and operational decisions jointly and an iterated local search heuristic to solve large-scale instances. Herein, we use a concurrent scheduler algorithm to generate an initial feasible solution, which serves as a starting point for our iterated local search algorithm. In the sequential case, we first optimize trip assignments and charging locations. Charging schedules are then determined after fixing the optimal decisions from the first level. The joint model, on the other hand, integrates charge scheduling within the local search procedure. The solution quality of the joint and sequential iterated local search models are compared for multiple real-world bus transit networks. Our results demonstrate that joint models can help further improve operating costs by 14.1% and lower total costs by about 4.1% on average compared with sequential models. In addition, energy consumption costs and contracted power capacity costs have been reduced significantly due to our integrated planning approach.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.